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Abstract

We present an automated technique for generating compiler op-
timizations from examples of concrete programs before and after
improvements have been made to them. The key technical insight
of our technique is that a proof of equivalence between the original
and transformed concrete programs informs us which aspects of the
programs are important and which can be discarded. Our technique
therefore uses these proofs, which can be produced by translation
validation or a proof-carrying compiler, as a guide to generalize
the original and transformed programs into broadly applicable op-
timization rules.

We present a category-theoretic formalization of our proof gen-
eralization technique. This abstraction makes our technique appli-
cable to logics besides our own. In particular, we demonstrate how
our technique can also be used to learn query optimizations for re-
lational databases or to aid programmers in debugging type errors.

Finally, we show experimentally that our technique enables pro-
grammers to train a compiler with application-specific optimiza-
tions by providing concrete examples of original programs and the
desired transformed programs. We also show how it enables a com-
piler to learn efficient-to-run optimizations from expensive-to-run
super-optimizers.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — Compilers; Optimization

General Terms Languages, Performance, Theory

1. Introduction

Compilers are one of the core tools that developers rely upon, and
as a result they are expected to be reliable and provide good perfor-
mance. Developing good compilers however is difficult, and the op-
timization phase of the compiler is one of the trickiest to develop.
Compiler writers must develop complex transformations that are
correct, do not have unexpected interactions, and provide good per-
formance, a task that is made all the more difficult given the number
of possible transformations and their possible interactions.

The broad focus of our recent work in this space has been
to provide tools that help programmers with the difficulties of
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writing compiler optimizations. In this context, we have done work
on automatically proving correctness of transformation rules, on
generating provably correct dataflow analyses, and on mitigating
the complexity of how transformation rules interact.

Despite all these advances, programmers who wish to imple-
ment optimizations often still have to write down the transforma-
tion rules that make up the optimizations in the first place. This task
is error prone and tedious, often requiring multiple iterations to get
the rules to be correct. It also often involves languages and inter-
faces that are not familiar to the programmer: either a language for
rewrite rules that the programmer needs to become familiar with,
or an interface in the compiler that the programmer needs to learn.
These difficulties raise the barrier to entry for non-compiler-experts
who wish to customize their compiler.

In this paper, we present a new paradigm for expressing com-
piler optimizations that drastically reduces the burden on the pro-
grammer. To implement an optimization in our approach, all the
programmer needs to do is provide a simple concrete example of
what the optimization looks like. Such an optimization instance
consists of some original program and the corresponding trans-
formed program. From this concrete optimization instance, our sys-
tem abstracts away inessential details and learns a general opti-
mization rule that can be applied more broadly than on the given
concrete examples and yet is still guaranteed to be correct. In other
words, our system generalizes optimization instances into correct
optimization rules.

Our approach reduces the burden on the programmer who
wishes to implement optimizations because optimization instances
are much easier to develop than optimization rules. There is no
more need for the programmer to learn a new language or inter-
face for expressing transformations. Instead, the programmer can
simply write down examples of the optimizations that they want to
see happen, and our system can generate optimization rules from
these examples. The simplicity of this paradigm would even enable
end-user programmers, who are not compiler experts, to extend the
compiler using what is most familiar to them, namely the source
language they program in. In particular, if an end-user programmer
sees that a program is not compiled as they wish, they can simply
write down the desired transformed program, and from this con-
crete instance our approach can learn a general optimization rule to
incorporate into the compiler. Furthermore, optimization instances
can also be found by simply running a set of existing benchmarks
through some existing compiler, thus allowing a programmer to
harvest optimization capabilities from several existing compilers.

The key technical challenge in generalizing an optimization
instance into an optimization rule is that we need to determine
which parts of the programs in the optimization instance mattered,
and how they mattered. Consider for example the very simple
concrete optimization instance x+(x-x) = X, in which the variable
x is used three times in the original program. This optimization



however does not depend on all three uses referring to the same
variable x. All that is required is that the uses in (x-x) refer to
the same variable, whereas the first use of x can refer to another
variable, or more broadly, to an entire expression.

Our insight is that a proof of correctness for the optimization
instance can tell us precisely what conditions are necessary for the
optimization to apply correctly. This proof could either be gener-
ated by a compiler (if the optimization instance was generated from
a proof-generating compiler), or more realistically, it can be gener-
ated by performing translation validation on the optimization in-
stance. Since the proof of correctness of the optimization instance
captures precisely what parts of the programs mattered for correct-
ness, it can be used as a guide for generalizing the instance. In
particular, while keeping the structure of the proof unchanged, we
simultaneously generalize the concrete optimization instance and
its proof of correctness to get a generalized transformation and a
proof that the generalized transformation is correct. In the example
above, the proof of correctness for x+(x-x) = x does not rely on
the first use of x referring to the same variable as the other uses in
(x-x), and so the optimization rule we would generate from the
proof would not require them to be the same. In this way we can
generalize concrete instances into optimization rules that apply in
similar, but not identical, situations while still being correct.

Our contributions can therefore be summarized as follows:

e We present a technique for generating optimization rules from
optimization instances by generalizing proofs of correctness
and the objects that these proofs manipulate (Section 2).

e We formalize our technique as a category-theoretic framework
that can be instantiated in various ways by defining a few key
categories and operations on them (Section 3). The general na-
ture of our formalism makes our technique broadly applicable.

We illustrate the generality of our framework by instantiating
it not only to compiler optimizations (Section 4), but to other
domains (Section 5). In the database domain, we show that
proof generalization can be used to learn efficient query opti-
mizations. In the type-inference domain, we show that proof
generalization can be used to improve type-error messages.

e We used an implementation of our approach in the Peggy com-
piler infrastructure [21] to validate the following three hypothe-
ses about our approach: (1) our approach can learn complex op-
timizations not performed by gcc -03 from simple examples
provided by the programmer (2) it can learn optimizations from
Peggy’s expensive super-optimization phase (3) it can learn op-
timizations that are useful on code that it was not trained on.

2. Overview

The goal that we are trying to achieve is to generalize optimization
instances into optimization rules. The key to our approach is to
use a proof of correctness of the optimization instance as a guide
for generalization. The proof of correctness tells us precisely what
parts of the program mattered and how, so that we can generalize
them in a way that retains the validity of the proof structure.
Intuitively, our approach is to fix the proof structure, and then
try to find the most general optimization rule that a proof of that
structure proves correct. Focusing on a given proof structure also
has the added advantage that, once the structure is fixed, we will be
able to show that there exists a unique most general optimization
rule that can be inferred from the proof structure, something that
does not hold in general. For example, consider the optimization
instance 0 * O = 0. This transformation has two incomparable
generalizations, X * 0 = 0 and 0 * X = 0, depending on whether
one uses the axiom Yx.x*0 = 0 or Yx.0*x = 0 to prove correctness.
However, once we settle on a given proof of correctness, not only

does there exists a most general optimization rule given the proof
structure, but we can also show that our algorithm infers it.

In this section, we start by giving some examples of proof-based
generalization (Section 2.1), explain some of the challenges be-
hind generalization (Section 2.2), give an overview of our technique
(Section 2.3), and finally describe a way of decomposing optimiza-
tions we generate into smaller independent ones (Section 2.4).

2.1 Generalization examples

Figure 1 shows an example of how our approach works. We de-
scribe the process at a high-level, and then describe the details of
each step. At a high-level, we start with two concrete programs,
presenting an example of what the desired transformation should
do — parts (a) and (b); we convert these programs into our own in-
termediate representation — parts (c) and (d); we then prove that the
two programs are equivalent, a process known as translation vali-
dation — part (e); from the proof of equivalence we then generalize
into optimization rules — parts (f) and (g) show two possible gener-
alizations. We now go through each of these steps in detail.

The optimization that is illustrated in parts (a) and (b) of Fig-
ure 1 is called loop-induction variable strength reduction (LIVSR).
The optimization essentially replaces a multiplcation with an addi-
tion inside of a loop.

As we will show in Section 3, our approach is general and can
be applied to many kinds of intermediate representations, and even
to domains other than compiler optimizations. However, to make
things concrete for our examples, we will use the PEG and E-
PEG intermediate representations from our previous work on the
Peggy compiler [21] (this is also the representation we use in our
implementation and evaluation).

Part (c) of Figure 1 shows a Program Expression Graph (PEG)
representing the use of i*5 in the code of part (a). A PEG contains
nodes representing operators (for example “+” and “+”), and edges
representing which nodes are arguments to which other nodes. The
arguments to a node are displayed below the node. The top of the
PEG contains a multiply node representing the multiply from i*5.
The 6 node represents the value of i inside the loop. In particular,
the 6 node states that the initial value of i (the left child of 8) is 0,
and that the next value of i (the right child of ) is 1 plus the current
value of i. Similarly, part (d) of the figure shows the PEG for the
use of i in part (b).

Now that we have represented the two programs in our interme-
diate reprensentation, we must prove that they are equivalent. We
do so using an E-PEG, which is a PEG augmented with equality
information between nodes. Graphically, we represent two nodes
being equal with a dotted edge between then, although in our imple-
mentation we represent equality by storing the equivalence classes
of nodes. Part (e) of Figure 1 is an E-PEG, constructed by apply-
ing four equality axioms to the original PEG: edge @ is added by
applying the axiom 6(x,y) * z = 0(x * z,y * z); edge ® is added by
applying the axiom (x +y) * z = x * 7+ y * z; edge © is added by
applying the axiom 1 * x = x; and edge @ is added by applying
the axiom O x = 0. This E-PEG represents many different versions
of the original program, depending on how we choose to compute
each equivalence class. By picking 6 to compute the {x*, 8} equiva-
lence class, and + to compute the {x, +} equivalence class, we get
the PEG from Figure 1(d), and as a result, the E-PEG therefore
shows that the PEGs from parts (c) and (d) are equivalent.

In our Peggy compiler, there are two ways of arriving at the
E-PEG in Figure 1(d). The first is as described above: we convert
two programs into PEGs and then repeatedly add equalities until
the result of the two programs become equal. The other approach
is to start with just an original program and PEG, say the ones
from Figure 1(a) and 1(c), and construct an E-PEG by repeatedly
applying axioms to infer equalities. A profitability heuristic can
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Figure 1. Loop Induction Variable Strength Reduction (LIVSR)

then select which PEG is the most efficient way of computing the
results in the E-PEG, which in our case would be the PEG from
Figure 1(d).

Whichever approach is used, the starting point of generalization
is the E-PEG from Figure 1(e), which represents a proof that the
PEGs from Figure 1(c) and Figure 1(d) are equivalent. In particular,
edges @ through @ in the E-PEG represent the steps of the
equivalence proof.

Our goal is to take the conclusion of the proof — in this case edge
@ - and determine how one can generalize the E-PEG so that the
proof encoded in the E-PEG is still valid. Figures 1(f) and 1(g)
show two possible generalized optimizations that can result from
this process. We represent a generalized optimization as an E-PEG
which contains a single equality edge, representing the conclusion
of the proof. There are two ways of interpreting such E-PEGs. One
is that it represents a transformation rule, with the single equality
edge representing the transformation to perform. The direction of
the rule is determined by which of the two programs in the instance
was the original, and which was the transformed.

Another way to interpret these rules is that they represent equal-
ity analyses to be used in our Peggy optimizer [21]. Optimizations
in Peggy take the form of equality analyses that infer equality infor-
mation in an E-PEG. Starting with some original program, Peggy
converts the program to a PEG, and then repeatedly applies equality
analyses to construct an E-PEG. It then uses a global profitability
heuristic to select the best PEG represented in the computed E-
PEG, and converts this PEG back to a program, which is the result
of optimization. Section 7 will show that our generated optimiza-
tions, when used as equality analyses, make Peggy faster while still
producing the same results. Furthermore, as equality analyses, our
generated optimizations will just infer additional information from
which the profitability heuristic can choose. We therefore do not
have to worry about whether a generated optimization will always
be just as profitable as the optimization instance.

Figure 1(f) shows a generalization where the constant 5 has been
replaced with an arbitrary constant C. The key observation is that
the particular choice of constant does not affect the proof — if we
have a proof of LIVSR for 5, the same proof holds for an arbitrary
constant. Note that PEGs abstract away the details of the control
flow graph. As a result the generalizations of Figure 1(f) could be
applicaple to a PEG even if there were many other nodes in the PEG
representing various kinds of loops or statements not affecting the
induction variable being optimized.

Figure 1(g) shows a more sophisticated generalization, where
instead of just generalizing constants, we also generalize operators.
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In particular, the “+” and “+” operators have been generalized to
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Figure 2. Example showing the need for splitting

OP, and OP,, with the added side condition that OP,; distributes
over OP, (there is no need to add a side-condition stating that OP,
distributes over 6 since all operators distribute over 6). Furthermore,
the constants 0 and 1 have been generalized to C, and C; with
the additional side conditions that C, is a zeroing constant for
OP; and Cj is an identity constant for OP,. The generalization in
Figure 1(g) can apply to operators that have the same algebraic
properties as integer plus/multiply, for example boolean OR/AND,
vector plus/multiply, set union/intersection, or any other operators
for which the programmer states that the side conditions from
Figure 1(g) hold.

The choice of axioms is what makes the difference between
the above two generalizations. Figure 1(g) results from a proof
expressed with more general axioms. Instead of the axiom (x + y) *
7= Xx*Z+y *z, the proof uses:

OP(OPy(x,y),2) = OP2(OP\(x,2), OP1(y,2))
where distributes(OP,, OP,)

and instead of 0 = x = 0, the proof uses:
OP(C, x) = C where zero(C, OP)

The LIVSR example therefore shows that the domain of axioms
and proofs affects the kind of generalization that one can perform.
More general axioms typically lead to more general generaliza-
tions. By using category theory to formalize our algorithm, we will
be able to abstract away the domain in which axioms and proofs are
expressed, thus separating the particular choice of domains from
the description of our algorithm. As a result, our algorithm as ex-
pressed in category theory will be general enough so that it can be
instantiated with many different kinds of domains for proofs and
axioms, including those that produce the different generalizations
presented above (and many others too).
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2.2 Challenge with obtaining the most general form

Looking at the LIVSR example, one may think that generaliza-
tion is as simple as replacing all nodes and operators in an E-
PEG with meta-variables, and then constraining the meta-variables
based on the axioms that were applied. Although this approach is
very simple, it does not always produce the most general optimiza-
tion rule for a given proof. Consider for example the E-PEG from
Figure 2(a), where a is some PEG expression. Edge @ is produced
by axiom x+0 = x; edge ® by x—x = 0; edge © by (x+y)—y = x;
edge @ by O+ x = x; and edge @© by transitivity of edges © and
@ . This E-PEG therefore represents a proof that the plus expression
at the top is equivalent to . If we replace nodes with meta-variables
and constrain the meta-variables based on axiom applications, one
would simply generalize « to a meta-variable. However, the most
general optimization rule from the proof encoded in Figure 2(a) is
shown in Figure 2(b). The key difference is that by duplicating the
shared “+” node, one can constrain the arguments of the two new
plus nodes differently. However, because PEGs can contain cycles,
one cannot simply duplicate every node that is shared, as this would
lead to an infinite expansion. The main challenge then with getting
the most general form is determining precisely how much to split.

2.3 Our Approach

Instead of generalizing the operators in the final E-PEG to meta-
variables and then constraining the meta-variables, our approach is
to start with a near empty E-PEG, and step through the proof back-
wards, augmenting and constraining the E-PEG as each axiom is
applied in the backward direction. This allows us to solve the above
splitting problem by essentially turning the problem on its head: in-
stead of starting with the final E-PEG and splitting, we gradually
add new nodes to a near-empty E-PEG, constraining and merging
as needed. Our algorithm therefore merges only when required by
the proof structure, keeping nodes separate when possible.

We illustrate our approach on a very simple example so that we
can show all the steps. Consider the E-PEG of Figure 3(a), where
two axioms have been applied to determine equality edges @ and
® . The axioms are shown in Figure 3(c), with each axiom being an
E-PEG where one edge has been labeled “P” for “Premise”, and one
edge has been labeled “C” for “Conclusion”. The e in the axioms
represent meta-variables to be instantiated. The first axiom states
x —x = 0, and the second axiom states x + 0 = x.

Our process is shown in Figure 3(b). We start at the top with
a single equality edge representing the conclusion of the proof,
and then work our way downward by applying the proof in reverse

if (Ip) k=0 if (Ip) return O

sum,i := 0 sum,i,j := 0
while (i < k) while (i < k)
sum += 5*i : sum += j
i++ j +=5

return sum i++
: return sum
eval -----o-meomosooooooooos (1]

/
N \a; """" ® o RN
AN A\ A\ :
0o ) PkO 0o *J) o *
/ / /
1 5 1

Figure 4. One E-PEG with two conceptual optimizations

order: in step 1 we apply the second axiom backward, and then in
step 2 we apply the first axiom backward. Each time we apply an
axiom backward, we create and/or constrain E-PEG nodes in order
to allow that axiom to be applied. Figure 3 shows using fine-dotted
edges how the “Premise” and “Conclusion” edges of the axioms
map onto the E-PEGs being constructed. For example, note that in
step 1, when the second axiom is applied backward, we remove the
final conclusion edge, and instead replace it with an E-PEG that
essentially represents e + 0.

There is an alternate way of viewing our approach. In this
alternate view, we instantiate all the axioms that have been applied
in the proof with fresh meta-variables, and then use unification
to stitch these freshly instantiated axioms together so that they
connect in the right way to make the proof work. With this view in
mind, we show in Figure 3 how the first and second axioms would
be stitched together using a bi-directional arrow.

This section has only given an overview of how our approach
works. Sections 3 and 4 will formalize our approach using category
theory and revisit the above example in much more detail.

2.4 Decomposition

Even though our algorithm finds the most general transformation
rule for a given proof, the produced rule may still be too specific
to be reused. This can happen if the input-output example has
several conceptually different optimizations happening at the same
time. Consider for example the optimization instance shown in
Figure 4. The top of the Figure shows the original and transformed
code. There are two independent high-level optimizations. The
first is LIVSR, which replaces the i*5 with a variable j that
is incremented by 5 each time around the loop; the second is
specialization for the true case of the if(!p) branch, so that it
immediately returns.

The corresponding E-PEG is shown at the bottom of the Figure.
The E-PEG does not show all the steps — instead it just displays
the final equality edge @, and an additional edge ® , which we
will discuss shortly. This E-PEG uses three new kinds of nodes (all
of which were introduced in [21]): ¢(p, e, ef) evaluates to e, if p
is true and ey otherwise; eval(s, i) returns the i"" element from the
sequence s; and pass(s) returns the index of the first element in the
boolean sequence s that is true. The eval/pass operators are used
to extract the value of a variable after a loop. Consider for example
the top-leftmost 6 in Figure 4, which represents the sequence of
values that the variable sum takes throughout the loop. The pass



node computes the index of the last loop iteration, and the result of
pass is used to index into the sequence of values of sum.

In the E-PEG, the two optimizations manifest themselves as fol-
lows: LIVSR happens using steps similar to those from Figure 1 on
the PEG rooted at the “+” node (producing edge ® ); the special-
ization optimization happens by pulling the ¢ node up through the
>, pass and eval nodes (producing edge @ ). Each of these opti-
mizations takes several axiom applications to perform, introducing
various temporary nodes that are not shown in Figure 4.

If we simply apply the generalization algorithm outlined in Sec-
tion 2.3, we will get a single rule (although generalized) that applies
the two optimizations together. However, these two optimizations
are really independent of each other in the sense that each can be
applied fruitfully in cases where the other does not apply. Thus, in
order to learn optimizations that are more broadly applicable, we
further decompose optimizations that have been generalized into
smaller optimizations. One has to be careful, however, because de-
composing too much could just produce the axioms we started with.

To find a happy medium, we decompose optimizations as much
as possible, subject to the following constraint: we want to avoid
generating optimization rules that introduce and/or manipulate tem-
porary nodes (i.e. nodes that are not in the original or transformed
PEGs). The intuition is that these temporary nodes really embody
intermediate steps in the proof, and there is no reason to believe
that these intermediate steps individually would produce a good
optimization.

To achieve this goal, we pick decomposition points to be equal-
ities between nodes in the generalized original and transformed
PEGs (and not intermediate nodes). In particular, we perform de-
composition in two steps. In the first step, we generalize the entire
proof without any decomposition, which allows us to identify the
nodes that are part of the generalized original or final terms. We
call such nodes required, and equalities between them represent
decomposition points. In the second step, we perform generaliza-
tion again, but this time, if we reach an equality between two re-
quired nodes we take that equality as an assumption for the current
generalization, and start another generalization beginning with that
equality.

In the example of Figure 4, we would find one such equality
edge, namely edge ® . As a result, our decomposition algorithm
would perform two generalizations. The first one starts at the con-
clusion @ , going backwards from there, but stops when edge ® 1is
reached (i.e. edge ® is treated as an assumption). This would pro-
duce a branch-lifting optimization. Separately, our decomposition
algorithm would perform a generalization starting with ® as the
conclusion, which would essentially produce the LIVSR optimiza-
tion.

3. Formalization

Having seen an overview of how our approach works, we now
give a formal description of our framework for generalizing proofs
using category theory. The generality of our framework not only
gives us flexibility in applying our algorithm to the setting of
compiler optimizations by allowing us to choose the domain of
axioms and proofs, but it also makes our framework applicable to
settings beyond compilers optimizations. After a quick overview of
category theory (Section 3.1), we show how axioms (Section 3.2)
and inference (Section 3.3) can be encoded in category theory. We
then define what a generalization is (Section 3.4), and finally show
how to construct the most general one (Section 3.5).

3.1 Overview of category theory

A category is a collection of objects and morphisms from one
object to another. For example, the objects of the commonly used
Set category are sets, and its morphisms are functions between sets.

Not all categories use functions for morphisms, and the concepts
we present here apply to categories in general, not only to those
where morphisms are functions. Nonetheless, thinking of the case
where morphisms are functions is a good way of gaining intuition.

Given two objects A and B in a category, the notation f :
A — B indicates that f is a morphism from A to B. This same
information is displayed graphically as follows:

/

A——mm B

In addition to defining the collection of objects and morphisms,
a category must also define how morphisms compose. In particular,
forevery f : A — Band g : B — C the category must define a
morphism £; g : A — C that represents the composition of f and g.
The composition £; g is also denoted g o f. Morphism composition
in the Set category is simply function composition. Morphism
composition must be associative. Also, each object A of a category
must have an identity morphism id 4 : A — A such that id 4 is an
identity for composition (that is to say: (id 4; f) = (f;id 4) = f, for
any morphism f).

Information about objects and morphisms in category theory is
often displayed graphically in the form of commuting diagrams.
Consider for example the following diagram:

4L

5] 1
e — D

By itself, this diagram simply states the existence of four objects
and the appropriate morphisms between them. However, if we say
that the above diagram commutes then it also means that f; A = g; i.
In other words, the two paths from A to D are equivalent. The
above diagram is known as a commuting square. In general, a
diagram commutes if all paths between any two objects in the
diagram are equivalent. Commuting diagrams are a useful visual
tool in category theory, and in our exposition all diagrams we show
commute.

Although there are many kinds of categories, we will be focus-
ing on structured sets. In such categories, objects are sets with some
additional structure and the morphisms are structure-preserving
functions. The Set category mentioned previously is the simplest
example of such a category, since there is no structure imposed
on the sets. A more structured example is the Rel category of bi-
nary relations. An object in this category is a binary relation (rep-
resented, say, as a set of pairs), and a morphism is a relation-
preserving function. In particular, the morphism f : R, — R, is
a function from the domain of R, to the domain of R, satisfying:
VYx,y. xRy = f(x) R, f(y). Informally, there are also cat-
egories of expressions, even recursive expressions, and the mor-
phisms are substitutions of variables. As shown in more detail in
Section 4, in the setting of compiler optimizations, we will use a
category in which objects are E-PEGs and morphisms are substitu-
tions.

3.2 Encoding axioms in category theory

Many axioms can be expressed categorically as morphisms [1]. For
example, transitivity (Vx,y,z. xRy A yRz = xRz) can be expressed
as the following morphism in the Rel category:

Xy
Xy trans y oz ( 1 )
y <z X z

where trans is the function (x — x,y — y,z — z) (we display
a relation graphically as a listing of pairs — the left object above



is the relation {(x,y), (y,z)}). In this case, the axiom is “identity-
carried”, meaning the underlying function (namely trans) is the
identity function, but that need not be the case in general.

Now consider an object A in the Rel category. We will see how
to state that this object (relation) is transitive. In particular, we say
that A satisfies trans if for every morphism f : {(x,y), (y,2)} = A,
there exists a morphism f” : {(x,y), (,2), (x,z)} — A such that the
following diagram commutes:

X y trans
_— .
y z
()
7} /
A

To see how this definition of A satisfying trans implies that A
is a transitive relation, consider a morphism f from {(x,y), (y,z)} to
A. This morphism is a function that selects three elements a, b, ¢ in
the domain of A such that aAb and bAc. Since trans is the identity
function, a morphism #” will exist if and only if aAc also holds.
Since this has to hold for any f (i.e. any three elements a, b, c in
the domain of A with aAb and bAc), A will satisfy trans precisely
when the relation defined by A is transitive.

Similarly, our E-PEG axioms can be encoded as identity-carried
morphisms which simply add an equality. The axiom x % 0 = 0 is
encoded as the identity-carried morphism from the E-PEG x * y,
with y equivalent to 0, to the E-PEG x # y, with y equivalent to 0
and x =y equivalent to 0. Thus, an E-PEG satisfies this axiom if for
every x * y node where y is equivalent to 0, the x = y node is also

equivalent to 0. More details on our E-PEG category can be found
in Section 4.

=< =
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3.3 Encoding inference in category theory

Inference is the process of taking some already known informa-
tion and applying axioms to learn additional information. In the
E-PEG setting, inference consists of applying axioms to learn
equality edges. To start with a simpler example, consider the re-
lation {(a, b), (b, ), (c,d)}, and suppose we want to apply transi-
tivity to (a,b) and (b, c) to learn (a,c). Applying transitivity first
involves selecting the elements on which we want to apply the
axiom. This can be modeled as a morphism from {(x,y), (v, z)} to
{(a,b), (b, ), (c,d)}, specifically (x — a,y — b,z + c). This pro-
duces the following diagram:

Xy
X y trans
— |y z
y z
X Z
X a,
Yy b, 3)
7z
a b
b ¢
c d

Adding (a, ¢) completes the diagram into a commuting square:

Xy
Xy trans
Z Yoz
y X z
X a, X a,
y b, y b, 4
z-cC >
7 b a b
b ¢
b ¢ |——|
c d c d
a c

The above commuting diagram therefore encodes that transivity
was used to learn information, in particular (a, c), but unfortunately,
it does not state that nothing more than transivity was learned. For
example, the bottom-right object (relation) in the above commut-
ing square could acually contain more entries, say (a, a), and the
diagram would still commute. To address this issue, we use the
concept of pushouts from category theory.

Dermnition 1 (Pushout). A commuting square [A, B, C, D] is said
to be a pushout square if for any object € that makes [A, B, C, £]
a commuting square, there exists a unique morphism from D to &
such that the following diagram commutes:

PREAD:
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Furthermore, given A, B, C, f and g in the diagram above, the
pushout operation constructs the appropriate D, i and h that makes
[A, B, C,D] a pushout square. When the morphisms are obvious
from context, we omit them from the list of arguments to the pushout
operation, and in such cases we use the notation B + 4 C for the
result D of the above pushout operation.

Pushouts in general are useful for imposing additional structure.
Intuitively, when constructing pushouts, A represents “glue” that
will tie together B and C: f says where to apply the glue in B;
g says where to apply the glue in C. The pushout produces D by
gluing B and C together where indicated by f and g. For example,
in a category of expressions, pushouts can be used to accomplish
unification: if A is the expression consisting of a single variable x,
and £ and g map x to the root of expressions B and C respectively,
then the pushout D is the unification of B and C. If the expressions
cannot be unified, then no pushout exists.

Going back to our example, to encode the application of the
transitivity axiom, we require that the commuting square in dia-
gram (4) be a pushout square. The pushout square property applied
to diagram (4) ensures that, for any relation € such that a€c, there
will be a morphism from the bottom right object in the diagram
(call it D) to &€, meaning that & contains as much or more informa-
tion than D, which in turn means that D encodes the least relation
that includes (a, c). This is exactly the result we want from applying
transitivity on our example.

Furthermore, we can obtain the bottom right coner of dia-
gram (4) by taking the pushout of diagram (3). Thus, inference
is the process of repeatedly identifying points where axioms can
apply and pushing out to add the learned information. This pro-
duces a sequence of pushout squares whose bottom edges all chain
together. For example, in the diagram below, app, states where to
apply axiom; in &, and the pushout &, +4, C; produces the result
&y; in the second step, app. states where to apply axiom, in £, and
the pushout €; +4, C, produces &,; this process can continue to
produce an entire sequence &;, where each &; encodes more infor-
mation than the previous one.

axiom axiom,
A —> 0 A4, —3 ¢

Jappr \ |aep: \ )

Eo & &
In the E-PEG setting, each &; will be an E-PEG, and each axiom
application will add an equality edge. The entire sequence above
constitutes a proof in our formalism: it encodes both the axioms




being applied (axiom,, axiom,, etc.), how they are applied (app,,
app,, etc.), and the sequence of conclusions that are made (€, &,
&,, etc.). Traditional tree-style proofs (such as derivations) can be
linearized into our categorical encoding of proofs (see Section 6 for
more details on how this can be done).

3.4 Defining generalization in category theory

Proof generalization involves identifying a property of the result
of an inference process and determining the minimal information
necessary for that proof to still infer that property. We represent a
property as a morphism to the final result of the inference process.
For example, in the Rel category, a morphism from {(x,y)} to the
final result of inference would identify a related @ and b whose
inferred relationship we are interested in generalizing. For E-PEGs,
a morphism from @ ~ S to an E-PEG £ identifies two equivalent
nodes in &, phrasing the property “these two nodes are equivalent”.
Generalization applied to this property will produce a generalized
E-PEG for which the proof will make those two nodes equivalent.
We start by looking at the last axiom application in the inference
process, the one that produces the final result. In this case we have:

jom
N
e s o prop

A 2@ s the (last) axiom being applied. A 2%, & is where the
axiom is being applied. £’ is the result of pushing out axiom and app.

P 2% &' s the property of £’ for which we want a generalized

proof.

Next we need to identify which parts of P the last axiom ap-
plication concludes. This step is necessary because, in general, P
may only be partially established by the last step of inference. For
example, in the Rel category, we may be interested in generalizing
a proof whose conclusion is that the final relation includes (a, b)
and (b, ¢). In this case, it is entirely possible that the last step of
inference produced (a, b) whereas an earlier step produced (b, ¢).

To identify which parts of P the last axiom application con-
cludes, we use the concept of pullbacks from category theory. Pull-
backs are the dual concept to pushouts.

DeriniTion 2 (Pullback). A commuting square [A, B, C, D] is said
to be a pullback square if for any object € that makes [E, B, C, D]
a commuting square, there exists a unique morphism from & to A
such that the following diagram commutes:

lg ! lﬁ

G—i>D

Furthermore, given B, C, D, i and k in the diagram above, the
pullback operation constructs the appropriate A, f and g that
makes [A, B, C, D] a pullback square. When the morphisms are
obvious from context, we omit them from the list of arguments to the
pullback operation, and in such cases we use the notation B X4, €
for the result A of the above pullback operation.

Whereas pushouts are good for imposing additional structure,
pullbacks are good for identifying common structure. For example,
in the Set category with injective functions, B X5 € would intu-
itively be the intersection of the images of B and C in D.

Returning to our diagram, we take the pullback C x¢, P:

O

g Wdom « l
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O now identifies where the result of the application and the property
overlap.

A generalization of € is an object § with a morphism gen : § —
€ (see diagram (6) below). A generalization of app is a morphism
appg + A — G with appgigen = app. We apply axiom to the
generalized application app by taking the pushout to produce §'.
Lastly, we want our property to hold in §’ for the same reason
that it holds in &’; that is, any information added by axiom to
make the property prop hold in €’ should also make the property
hold in §’. We enforce this by requiring an additional morphism
propg + P — §'. To summarize, then, a generalization of applying
axiom via app to produce prop is an object § with morphisms gen,
appg, and prop, making the following diagram commute:

axiom /

A — C

\uPPg \ prop,
ap| S AL

/gen ¥ prop

(6)

<9 <— O

Recall that §’ in the above diagram is the pushout of axjom and
app. The dashed line from § to £’ is the unique morphism induced
by that pushout (note that there is a morphism from § to £’ passing
through &).

The above diagram defines a generalization for the last step of
the inference process. A generalization for an entire sequence of
steps — such as diagram (5) — is an initial Gy and a morphism gen
from Gy to £, with a sequence of generalized axiom applications
such that the property holds in the final ,,.

3.5 Constructing generalizations using category theory

Above we have defined what a generalization is, but not how to
construct one. Furthermore, our goal is not just to construct some
generalization; after all € is a trivial generalization of itself. We
would like to construct the most general generalization, meaning
that not only does it generalize €, but it also generalizes any other
generalization of €.

In order to express our generalization algorithm, we introduce a
new category-theoretic operation called a pushout completion.

DerintTion 3 (Pushout completion). Given a diagram
f
A > B
N
D

the pushout completion of [A,B,D,f,g] is a pushout square
[A, B, C, D] with the property that for any other pushout square
[A, B, E,F] in which the morphism from B to F passes through
D, there is a unique morphism from C to £ (shown below with a



dashed arrow) such that the following diagram commutes:

/

A —— B

N 2

¢ > D
e ¥
E —— F

When the morphisms are obvious from context, we omit them from
the list of arguments to the pushout completion, and in such cases
we use the notation D —, B for the result C of the above pushout
completion (the minus notation is used because in the above dia-
gram we have D = B +, C).

The intuition is that C captures the structure of D minus the
structure of B (reflected into D through g4) while keeping the
structure of A (reflected into D through f; g). For example, in the
Rel category, intuitively we would have: € = (D \ B) U A (where
A, B, Cand D are sets of tuples that represent relations).

Our requirement for constructing generalizations is that, for ev-

. axiom . .

ery axiom A —— C, there is a pushout completion for any mor-
phism £ from € to any object. There is encouraging evidence that
axioms with pushout completions are quite common. In particular,
all of our PEG axioms satisfy this condition. More generally, all
identity-carried morphisms in Rel or the category of expressions
satisfy this condition. Furthermore, at the end of this section we
show how to loosen this condition in a way that allows all mor-
phisms in Set and Rel to qualify as generalizable axioms.

Now that we have all the necessary concepts, the diagram below
and the subsequent description explain the steps that our algorithm
takes to construct the best generalization:

)

1. O is constructed by taking the pullback € x¢/ P.

2. P is constructed by taking the pushout € +¢ P. The pushout
P intuitively represents the unification of property P with the
assumptions and conclusions of axiom (which are represented
by €). The dashed morphism from P to &’ is induced by the
pushout property of P; it identifies how this unified structure
fitsin &’.

3. P is constructed by taking the pushout completion P —, €.
The pushout completion P’ intuitively represents the informa-
tion in P but with the inferred conclusion of axiom removed.
The dashed morphism from P’ to € is induced by the pushout
property of P; it identifies the minimal information necessary
in € so that applying axiom produces property P.

Let us return to the larger context of a chain of axioms rather
than applying just one axiom. In diagram (7) above, € would be the
result of an earlier axiom application. P’ then identifies the prop-
erty of € that needs to be generalized in that axiom application.
This process of generalization can be repeated backwards through
the chain of axioms until we arrive at the original &, that the in-
ference process started with. The generalized property of &, at that
point is then the best generalization of £, so that the proof infers
the property P we started with in diagram (7). The fact that this
solution is the most general falls immediately from the pushout

and pushout-completion properties of the construction. In partic-
ular, suppose that in diagram (7) there is another generalization G,
which essentially means that we merge diagrams (6) and (7) to-
gether. We need to show that there exists a morphism from P’ to G.
First, the pushout property on P induces a morphism from P to §'.
Second, the pushout-completion property on P’ induces the desired
morphism from P’ to G.

The above process provides a parameterized pseudo-algorithm
for generalizing proofs. The algorithm is parameterized by the
choice of category used to represent the inference process, along
with the details of implementing pushouts, pullbacks, and pushout
completions on this category.

3.6 Subpushout Completions

The requirement that all axioms always have pushout completions
is more restrictive than necessary. Although all the axioms in our
implementation satisfy this requirement, other applications of proof
generalization may need more freedom in their choice of axioms.
Here we formalize the actual requirement of all axioms needed to
apply our proof generalization technique.

In our proof generalization process, we only apply proof gener-
alizations in the following situation:

0
A axiom l
P

appl lpmp 7 =~
‘i%

E — &

where O is the pullback of app’ and prop, and P is the pushout of
this pullback.

Whenever this situation arises, there needs to be a *“subpushout
completion” of the pushout square [A, C, €, '] and P, which we
define in steps. A subpushout of the pushout square [A, C, &, £']
is a pushout square [A, C, G, 9] with a morphism geng : § — &
making the following diagram commute:

axiom
A — € ,
\fppg \appg
s g
Ko,
e &) e’ getg
A subpushout through P also has a morphlsm extg : P — G with
app9 = app; extg and extg; gen9 = prop.

A subpushout completion of [A, C, €, £'] and app is a universal
subpushout [A, @, ", P] of [A, C, &, &’] through P. This means that
for any other subpushout [A, C, G, '] of [A, C, &, £'] extending P
there is a unique morphism from P’ to § making the following
diagram commute:

axiom

app




This is admittedly complicated, but this more precise require-
ment actually makes many more axioms valid for generalization.
For example, in (classical) Set only the surjective functions (and
the unique function from the empty set to the singleton set) satisty
the less precise requirement. However, all morphisms in Set sat-
isfy the more precise requirement. Because of this, all morphisms
in Rel also satisfy the more precise requirement. In fact, in both
categories, the extension morphism ext is always an identity mor-
phism (and Pis always equal to P).

3.7 Proof of Generality

Before constructing the most general proof, we have to define
what a generalized proof is. Suppose we have a concrete proof
(Eieto..y with axioms (axiom; : A; = C)ie(1..ny and applications
(app, : Ai = &i_1)ic(1..my» 50 that & is the concrete assumption and
&, is the concrete conclusion. app! : C; — &;, for i in {l...n},
is defined as the appropriate morphism in the pushout diagram
[A;, Ci, Ei_1, €1 Also suppose we have a desired property of our
concrete conclusion, prop : P — &,, that we want to have hold in
our generalized proof. Then a generalized proof is a proof using
the same axioms but different objects (X;)ic0..,y and applications
(app* : A;i > Xi-)ie(1.m along with morphisms (genX : X; —
Eicto..ny and prapjC : P — X, evidencing generalizations satisfying
a few properties. First, appix; ﬂenix equals app,, for i in {1...n}, so
that applications in proof X are generalizations of the applications
in proof €. Second, prop™; genff equals prop, so that the property
of the generalized conclusion X, is a generalization of the desired
property of the concrete conclusion &,,. $Lastly, [0, P, C,, X, ] must
form a commutative square (where O is the pullback of prop and
app, ), so that the desired property is still a result of the final axiom
application. Now we procede to construct a generalized proof and
prove that it is the most general generalization.

First, we use the process for generalizing axiom applications in
order to construct the significant property (prop, : Pi = EDico.ny
at each stage. P, is defined as P, and prop, : P, — &, is defined
as prop : P — &,. O, for i in {1...n}, 1s the pullback of app;
and prop,. P;, for i in {1...n}, is the pushout of O;’s pullback
diagram, with app, : €; — P; as the appropriate morphism in the
pushout square. Py, P, ext? : P, — P, app? T A - Py,
and prop, | : P,y — &y, foriin {1...n}, are all defined as the
appropriate objects and morphisms resulting from the subpushout
completion of [A;, C;, €;-1, €;] and app,.

From this we construct a generalized proof (G;)ie(..,, With gen-
eralizations (genig 1 §; = &iiepo..ny and applications (appi9 A >
Gi-1)ieq1..n- We will also construct a morphism prop9 P =G,
such that prop%; gen9 equals prop and [O, P, C,, G,] is a commut-
ing square (where O is the pullback of prop and app,), demon-
strating that the desired property is concluded by this generalized
proof using the final axiom application. Gy is defined as P, with
geng : G0 — & defined as prop,, thus the generalized property we
constructed is the starting point of our generalized proof. As we
construct the rest of our proof, we will also construct a sequence
of morphisms (pmpig : Pi = Giico..ny» With pmpig; gen? = prop, al-
ways holding, showing that the generalized property for each stage
holds in our generalized object at the stage. prapos : Py — Gy is de-
fined simply as the identity morphism, automatically satisfying the
above property. appi9 A — G, foriin {1...n}, is simply defined
as app?);prop?. G, for i in {1 ...n}, is then defined as the pushout
of axiom; and app . prop? : P; — G; and gen? : G; — &, for i in
{1...n}, are defined using the morphisms induced by pushouts in

the following commutative diagram:

app;

gi—l

Although most components of this diagram commute by either
assumption or construction, the two paths from fj’,- to &; commute
due to the uniqueness property of pushout squares (specifically of
the pushout square [A;, C;, P;_1, P;]). Because of this, prop?; gen?
is equal to prop;, maintaining our inductive property. In particular,
prop?; gen? equals prop, and [0, C,, Py, G,] is a commuting square,
so by defining prop% as propS we demonstrate that the desired
property holds appropriately in the result of our proof (since prop,
is defined as prop and O, is O). Thus, we have constructed a valid
generalized proof.

Lastly we need to prove that this is the most general proof of
the given concrete proof. So suppose there is another generalized
proof (X;)iej0..,y With generalizations (genix 2 X = Eicto..my and
applications (appix : A; = Xiz1)ieq1..n)- This generalized proof also
has a morphism prop™ : P — X, such that prop™; genff equals prop
and [0, P, C,, X,] is a commuting square, demonstrating that the
desired property is concluded by this generalized proof using the
final axiom application. First we demonstrate that the generalized
property prop, we constructed at each stage holds in X; at each stage
by constructing a suitable morphism propl.x : P; — X; such that
prap?c;genfC equals prop, and [O;, P;, €;, X;] is a commuting square.
We define pmpn3C as prop™ which satisfies the relevant properties
by assumption, since prop, is defined as prop and O, is 0. We
define prap?fl, foriin {1...n}, using the morphisms induced in the

following commutative diagram:

axiom,

app;

Ein

The morphism from P; to X; is induced by the pushout property
of P; since [0;, P;, €, X;] is a commuting square by inductive as-
sumption; call this morphism e;(tix. The morphism from P;_; to X;_,
and the morphism from j’,- to X; are induced by the subpushout
completion property of [A;, C;, fPi_l,ClAJ,-] since ‘gmiDC demonstrates
that [A;, C;, X;_1, X;] is a subpushout of [A;, C;, €;-1, E;] and e?(tix
demonstrates that this subpushout extends ;. Lastly, we construct
a sequence of morphisms (gen; : §i — Xi)ic..y demonstrating
that (G))ic0..ny is a generalized proof of (X;)e..,;. For each i in
{0...n}, we will maintain the property that pmp,9 ; gen; equals propix ,



demonstrating that G generalizes the significant property in X in
each stage. gen, is defined as propgc (since Gy is defined as Py),
satisfying the above property since propf)3 is simply the identity
morphism. gen,, for i in {1...n}, is induced by the pushout prop-
erty of [Py, P Sit, Sl using gen, |, satisfying the above prop-
erty by construction and the fact that propf’ is defined in terms of
the unique morphism from P. 10 G; ([Pi-1, $..6,.1,G]isa pushout
square using the pushout lemma, not repeated here as it is stan-
dard, since [A;, G,-,i]’;_l,fj’,v] and [A;, €;, 9;-1, G;] are both pushout
squares). From this, we can also easily deduce that prop¥; gen,
equals prop™ and, foriin {1...n}, appig; gen,_, equals appix, demon-
strating that G is a generalized proof of X. Also, for i in {0...n},
genig equals gen; gen;x due to the uniqueness property of pushouts,
demonstrating that G is a generalization of the generalization X.

4. E-PEG instantiation

‘We now show how to instantiate the parameterized algorithm from
Section 3 with E-PEGs. The category of E-PEGs can be formalized
in a straghtforward way using well established categories such
as partial algebras PAlg and relations Rel [1]. The full formal
description, however, is lengthy to expose, so we provide here a
semi-formal description.

An object in the E-PEG category is simply an E-PEG, where an
E-PEG is a set of possibly recursive expressions (think recursive
abstract syntax trees), with equalities between some of the nodes
in these expressions. These E-PEG expressions can have free vari-
ables, and a morphism f from one E-PEG A to another E-PEG B
is a map from the free variables of A to nodes of B such that, when
the substitution £ is applied to A, the resulting E-PEG is a sub-
graph of B. The substitution is also required to map expressions
that are known to be equal in A to expressions that are equal in B.

The three operations that need to be defined on the E-PEG
category intuitively work as follows:

e The pullback A X B treats A and B as sub-E-PEGs of € and
takes their intersection.

¢ The pushout A +¢ B treats C as a sub-E-PEG of both A and B
and unifies A and B along the common substructure C.

e The pushout completion C —4 B removes from C the equalities
in B that are not present in A.

We now revisit the example from Figure 3, and this time ex-
plain it using our category theoretic algorithm. Figure 5 shows the
generalization process for this example using E-PEGs. The objects
(boxes) in this figure are E-PEGs, and the thin arrows between them
are morphisms. The example has two axiom applications, and so
Figure 5 consists essentially of two side-by-side instantiations of
diagram (7). The thick arrows identify the steps taken by inference
and generalization. The equality edges in each E-PEG are labeled
with either a circle or a triangle to show how these equality edges
map from one E-PEG to another through the morphisms.

In this example the inference process uses two axioms to infer
that 5 + (7 — 7) is equal to 5. First, it applies the axiom x — x = 0 to
learn that 7—7 = 0, and then x+ 0 = xto learn that 5+ (7 —7) = 5.
We use the “Copy” arrows just for layout reasons — these copy
operations are not actually performed by our algorithm.

Once the inference process is complete, we identify the equality
we are interested in generalizing by creating an E-PEG containing
the equality @ = S (with @ and g fresh) and a morphism from this
E-PEQG to the final result of inference which maps a to 5 and 8 to
the + node. Thus we are singling out the triangle-labeled equality
in the final result of inference to generalize.

Having singled out which equality we want to focus on, we gen-
eralize the second axiom application using our three step approach

from Section 3: a pullback, a pushout, and then a pushout comple-
tion. The pullback identifies how the axiom is contributing to the
equalities we are interested in — in this case it contributes through
the triangle-labeled equality. The pushout then unifies the equality
we are interested in generalizing with a freshly instantiated version
of the axiom’s conclusion (with a and b being fresh). Finally, the
pushout completion essentially runs the axiom in reverse, removing
the axiom’s conclusion. In particular, it takes the substitution from
the unification and applies it to the premise of the axiom to produce
the E-PEG [a+ b---0].

This E-PEG, which is the result of generalizing the second ax-
iom application, is then used as a starting point for generalizing the
first axiom application, again using our three steps. The pullback
identifies that the first axiom establishes the circle-labeled equality
edge. The pushout unifies [a + b---0] with a freshly instantiated
version of the axiom’s conclusion (with ¢ being fresh). Note that
the circle-labeled equality edge in [a@ + b - - - O] must unify with the
corresponding equality edge in the axiom’s conclusion, and so b
gets unified with the minus node. Finally, the pushout completion
runs the first axiom in reverse, essentially removing the axiom’s
conclusion. The result is our generalized starting E-PEG for that
proof. We then generate a rule stating that whenever this starting
E-PEG is found, the final conclusion of the proof is added, in this
case the triangle-labeled equality.

The details of how our E-PEG category is designed affects the
optimizations that our approach can learn. For example, the cate-
gory described above has free variables, but they only range over
E-PEG nodes. For additional flexiblity, we can also introduce free
variables that range over node operators, such as variables OP; and
OP; in Figure 1. This would allow us to generate optimizations that
are valid for any operator, for example pulling an operation out of a
loop if its arguments are invariant in the loop. For even more flex-
ibility, we can augment our E-PEG catgory with domain-specific
relationships on operator variables, which could be used to indi-
cate that one operator distributes over another. With this additional
flexiblity, we can learn the more general version of LIVSR show in
Figure 1. In all these cases, to learn the more general optimizations,
one has to not only add flexiblity to the category, but also re-express
the axioms so that they take advantage of the more general cate-
gory (as was shown in Section 2.1). The E-PEG category can also
be augmented with new structure in order to accommodate anal-
yses not based on equalities. For example, an alias analysis could
add a distinctness relation to identify when two references point to
different locations. This would allow our generalization technique
to apply beyond the kinds of equality-based optimizations that our
Peggy compiler currently performs [21].

5. Other applications of generalization

The main advantage of having an abstract framework for proof gen-
eralization is that it separates the domain-independent components
of proof generalization — how to combine pullbacks, pushouts, and
pushout completions — from the domain-specific components of
the algorithm — how to compute pullbacks, pushouts, and pushout
completions. As a result, not only does this abstraction provides
us with a significant degree of flexibility within our own domain
of E-PEGs, as described in Section 4, but it also enables applica-
tions of proof generalization to problems unrelated to E-PEGs. We
illustrate this point by showing how our generalization framework
from Section 3 can be used to learn efficient query optimizations in
relational databases (Section 5.1), assist programmers with debug-
ging static type errors (Section 5.2), and improve polymorphism in
programs that have already been type checked.
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Figure 5. Example of generalization using E-PEGs

5.1 Database query optimization

In relational databases, a small optimization in a query can produce
massive savings. However, these optimizations become more ex-
pensive to find as the query size grows and as the database schema
grows. We focus here on the setting of conjunctive queries, which
are existentially quantified conjunctions of the predicates defined
in the database schema. For example, the query Jdy. R(x,y) A R(y,2)
returns all elements x and z for which there exists a y such that
(x,y) and (y, z) are in the R table (relation). For sake of brevity, we
discuss only conjunctive queries without existential quantification.
A conjuctive query can itself be represented as a small database.
For example, the query g := R(x,y,z,1) A R(x’,y,0,1) can be
represented by the following database (our notation assumes there
is one table in the database called R and just lists the tuples in R):

_lx oy z 1
Q'_x’yOI

Any result produced by g on a database instance / corresponds with
a relation-preserving and constant-preserving function from Q to 1.
One nice property of this representation is that the number of joins
required to execute a query is exactly one less than the number of
rows in the small database representing the query. Thus, reducing
the number of rows means reducing the number of joins.

Most databases have some additional structure known by the
designer. One such structure could be that the first column of R
determines the third column (we will use A, B, C, and D to refer
to the columns of R). This is known as a functional dependency,
noted by A — C. Functional dependencies fit into the broader class
of equality-generating dependencies since they can be used to in-
fer equalities. A query optimizer can exploit this information to
reduce the number of variables in a query, identify better opportu-
nities for joins, or even identify redundant joins. Unfortunately, the
functional dependency A — C provides no additional information
for our example query, at least not yet.

Another form of dependencies is known as tuple-generating
dependencies. These dependencies take the form “if these tuples
are present, then so are these”. One common example is known
as multi-valued dependencies. Suppose in our example database,
the designer knows that, for a fixed element in B, column A is
completely independent of C and D. In other words, R(a, b, c,d) A
R(d',b,c’,d") implies R(a,b,c’,d"), as well as R(a’, b, c,d). This is
denoted as B - A or equivalently as B » CD.

Adding tuples to a query in general is harmful because each
added tuple represents an additional join. However, combined with
equality-generating dependencies, these additional tuples can be
used to infer useful equalities, which can then simplify the query.
Let us apply an algorithm known as “the chase” [6] to optimize our
example query using A — C and B —» A:

x y z 1
x z 1| B»A| ") A-C | x 0 1
x'§01 xy()l':x’;}*()l
x y 0 1

The added tuple was used to infer that z must equal 0, which
then simplifies the rightmost database above into two tuples. The
optimizer can use this to select only tuples with C equal to 0 before
joining, a potentially huge savings. Although this example was
beneficial, many times adding tuples is harmful because it adds
additional joins which can be inefficient. Thus, a query optimizer
prefers to infer equalities without introducing unnecessary tuples.
Our framework from Section 3, instantiated to the database
setting, can use instances of optimized queries to identify general
rules for when adding tuples to a query is helpful. In particular, in
the above example, it could identify exactly what properties of the
original query led to the inferred equality. The category we will
use in this example is like Rel but with quaternary relations. The
“axiom” A — C can be expressed categorically by the morphism

a b ¢ d|cd-c|la b d
a b ¢ d a b d

a0l

The “axiom” B - A can be expressed using the morphism

a b ¢ d a, b C, d,
D —la b ¢ d
a ¢ a b ¢ d

Applying our framework to our sample query optimization se-
quence will produce the theorem

a b ¢ d|ecdme|a b
a b ¢ d a b

d
d/

or ol

or simply B — C. Thus, our framework can be used to learn
equality-generating dependencies, removing the need for the in-
termediate generated tuples. This was possible because the de-
pendencies involved, namely A — C and B - A, could be ex-
pressed categorically as morphisms. We have proven that our learn-



ing technique can be used so long as all the dependencies can be
expressed in this manner. Although the primary purpose of apply-
ing our framework to database optimizations was to demonstrate
the flexibility of our framework, discussions with an expert in the
database community [5] have revealed that our technique is in fact
a promising approach that would merit further investigation.

5.2 Type debugging

As type systems grow more complex, it also becomes more difficult
to understand why a program does not type check. Type systems re-
lying on Hindly-Milner type inference [18] are well known for pro-
ducing obscure error messages since a type error can be caused by
an expression far removed from where the error was finally noticed
by the compiler. Below we show how to apply our framework as
a type-debugging assistant that is similar to [12], but is also easily
adaptable to additional language features such as type classes.

In Haskell, heap state is an explicit component of a type. For
example, readSTRef is the function used to read references. This
is a stateful operation, so it has type Vs a. STRef s a — ST s a.
STRef s a is the type for a reference to a in heap s. ST s a stands
for a stateful computation using heap s to produce a value of type a.
In order to use this stateful value, Haskell uses the type class Monad
to represent sequential operations such as stateful operations. Thus
ST s is an instance of Monad for any heap s. A problem that quickly
arises is that operations such as + take two Ints, not two ST s Ints.
Thus, + has to be lifted to handle effects. To do this, there is
a function 1iftM2 which lifts binary functions to handle effects
encoded using any Monad. Likewise, 1iftM lifts unary functions.

Now consider the task of computing the maximum value from a
list of references to integers. If the list is empty, the returned value
should be —co. In Haskell, integers with —co are encoded using
the Maybe Int type: the Nothing case represents —oco and the
Just n case represents the integer n. Conveniently, max defined on
Int automatically extends to Maybe Int. The following program
would seem to accomplish our goal:

maxInReflList refs
= case refs of
[] -> Nothing
ref : tail -> liftM2 max
(liftM Just (readSTRef ref))
(maxInRefList tail)

Since readSTRef is a stateful operation, the lifting functions
1iftM2 and 1iftM allow max and Just to handle this state. Unfor-
tunately, this program does not type check. The Glasgow Haskell
Compiler, when run on the above program using do notation for
the recursive call, produces the error “readSTRef ref hasinferred
type ST s a but is expected to have type Maybe a”. This error mes-
sage does not point directly to the problem, so the programmer has
to examine the program, possibly even callers of maxInRefList,
to understand why the compiler expects readSTRef ref to have a
different type. Within maxInRefList alone there are many possi-
blities, such as the lifting operations, dealing with Maybe correctly,
and the recursive call. Here we can apply proof generalization to
limit the scope of where the programmer has to search, thereby
helping identify the cause of the type error.

Type inference can be encoded categorically using a category
of typed expressions. An object is a set of program expressions
and a map from these program expressions to type expressions,
although this map is not required to be a valid typing. Program
expressions can have program variables, and type expressions can
have type variables. A morphism from A to B is a type-preserving
substitution of program and type variables in A to program and type
expressions in B such that when the substitution is applied to A, the
resulting expressions are sub-expressions of the ones in B. In this

category, typing rules can be encoded as morphisms. For example,
function application can be encoded as:

(Gocm ]2V Gpspa iy

This states that, for any program expressions f and x where x has
type B, f must have type 8 — vy for f x to have type y. Hence,
the type « of f is mapped to S — 7y by the morphism. In effect,
applying this axiom unifies the type of f with 8 — .

Rules for polymorphic values can also be encoded as mor-
phisms. For example, the rule for Nothing can be encoded as:

- a — Maybe 8 -
—————"» [ Nothing : Maybe g |

This states that, for the value Nothing to have type «, there must
exist a type 8 such that @ equals Maybe . As before, applying this
axiom unifies the type of Nothing with Maybe 3.

Putting aside type classes for simplicity, the rule for 1iftM is:

[TiftM: o |22 [1ifth: Boy) > MB— My |

This rule uses a type variable M, which is treated like other type
variables except it maps to unary type constructors, such as Maybe
or the partially applied type constructor ST s.

Going back to the maxInRefList example, since the compiler
expects readSTRef ref to have type Maybe a, the type inference
process could be made to produce a proof that this fact must be
true for the program to type check. This proof can be expressed
categorically using the above encoding, which allows us to now
apply our generalization technique. We ask the question “Why does
readSTRef ref need to have type Maybe a?” categorically using
a morphism from object (x : Maybe ¢) that maps x to readSTRef
ref and { to a. We then proceed backwards through the inference
process. For each step, we determine whether it contributes to the
property; if it does, we generalize it, otherwise we skip the step
entirely so as not to needlessly constrain the program.

The first useful step to generalize is the function application rule
where the functionis 1iftM Just and the argument is readSTRef
ref. During inference, before applying this axiom, 1iftM Just
had type M a — M (Maybe a) for some M, a, and a; 1iftM Just
(readSTRef ref) had type Maybe g for some 3; and readSTRef
ref still had the unconstrained type y. Applying the function ap-
plication rule during inference causes y to be unified with M a and
M (Maybe «) with Maybe B. In turn, this forces M to unify with
Maybe, contributing to the reason why readSTRef ref must have
type Maybe a. Generalization can analyze this axiom application
to determine that readSTRef ref has type Maybe a because of
two key properties: (1) 1iftM Just had type M a — M ¢ (where
¢ generalizes Maybe «) and (2) 1iftM Just (readSTRef ref)
had type Maybe $3 (the same as the non-generalized type).

Generalizing property (1) eventually recognizes 1iftM as an
important value in the program, whereas Just is not. Generalizing
property (2) reaches similar kinds of conclusions in the rest of the
program. In this manner, generalization identifies exactly which
components of the program are causing the compiler to expect
readSTRef ref to have type Maybe a. The resulting skeleton
program is shown below, using dots for irrelevant expressions:

. = case . of
. —-> Nothing

o> liftM2 . (1iftM . L)

The skeleton program makes it clear that only the two cases, the
lifting operations, and the use of Nothing are causing the incor-
rect expectation. Combining these three facts, the programmer can
quickly realize that they forgot to lift the stateless value Nothing
into the stateful effect ST s, easily fixed by passing Nothing to the
return function. This mistake was hidden before because Maybe is



coincidentally an instance of Monad, so the lifting functions were
interpreted as lifting Maybe rather than ST s. The mistake was in
a different case than where the error was reported, misleading the
programmer into examining the wrong part of the program. Gener-
alization, however, helps the programmer pinpoint the problem by
removing parts of the program that do not contribute to the error.

5.3 Type Checking

Applying proof generalization to type checking will automatically
generalize the types of a program into polymorphic types. For
example, take the function

int sum(l:int list, i:int) := foldr (+) i 1

Now suppose type classes are added to the language and + is
an operator defined for any Num. Rather than have a programmer
go through all prior code involving integers and determine which
apply to arbitrary Num, we can generalize the proof that a typing is
valid for a given program to determine the minimal type constraints
necessary for the program to still typecheck.

In order to apply our framework from Section 3 to type deriva-
tions, we must encode type derivations as a category-theoretic in-
ference process — Diagram (5). There are several ways of doing this,
the most traditional of which would be to have an object in the cat-
egory be a type derivation, and an axiom be an operation that adds
one extra step at the end of the derivation. Thus, the sequence &;
from Diagram (5) would be a sequence in which each type deriva-
tion &; adds one additional step to derivation &;_;. Here we use an
equivalent encoding that is more direct and easier to illustrate, al-
though less traditional. This alternate encoding also illustrates the
flexibility of our category theoretic framework, which can support
many different encoding mechanisms for proofs.

An object in our category is a typed expression, which is a triple
consisting of: a program expression, a function from subexpres-
sion to types, and a unary predicate on subexpressions indicating
whether the type of the given subexpression is known to be valid.
We graphically represent an object in our category by writing down
the expression, using “:”” to show the types of subexpressions, and
using a checkmark ' to indicate that that the type of a subex-
pression is known to be valid. For example, the typed expression
(x:Yint + y:int):int is the expression x+y where x, y, and
x+y are all assigned type int, and only the typing of x is known
to be valid. The inference process starts with a typed expression
that has all the types but has no checkmarks and each step in the
inference process adds a checkmark.

A morphism from a typed expression p to a typed expression
q is mapping m from the program variables in p to those in g
and from the type variables in p to those in g such that p after
substituting with m is a subexpression of g. This map needs to also
preserve the subexpression-to-type mapping, as well as the type-
validity predicate.

To see how a regular typing rule would be encoded as an axiom
in our category, consider a typing rule of the following form, where
Pley, ;] is some expression composed of e; and e;:

e T e .7
Pler.er] - s P-rule
In our category theory formulation, this would be encoded as the
following axiom:

P-rule

[P[el: Ty, €3 © T2]2T3l—>lp[€1: T, e Tl T3

In order to type check the sum function, we must validate the
typing of its body assuming that the type of the parameters are
valid. In other words, starting with the object:

(foldr (+:int->int->int) (i:“int) (1:¥int list)):int

we want to establish:

(foldr (+:'int->int->int) (i:Yint) (1:Yint list)):Yint

To validate +: int->int->int, we apply the following axiom:

+ 7T
where isNum(t) holds

+:ToToT plus
where isNum(t) holds

This axiom has been updated to use type classes rather than have
one axiom for each elemental number type. Next, we apply the
following axiom to validate the whole expression:

(foldr (foldr
fasBoP | o | Flampop
R — R
(" alist) (7 alist)

): B ) B

Now that we have a proof of type validity expressed categori-
cally, we can generalize this proof. We first ask the question “Why
is the expression well-typed?” using the morphism from the object
e:Y7 which maps e to foldr (+) i 1andttoint. Applying the
axiom for foldr backwards will transform e:¥r into

(foldr (£ a->B->B) (i B (1:'list a)):a

The axiom for + will replace £ with +, unify @ and g (say as 7), and
add the constraint isNum(t):

(foldr (+:1->1->7) (17 ©) (1:'list )):t | isNum(r)

Thus, we have automatically added polymorphism from int
sum(list int, int) to Y7 € Num. 7 sum(list 7, 7). Al-
though this is just a toy example, it demonstrates a potential appli-
cation of our framework to a domain very different from E-PEGs.

6. Manipulating proofs

Given a proof of correctness, our generalization technique produces
the most general optimization for which the same proof applies.
This still allows different proofs of the same fact to produce in-
comparable generalizations. However, by changing proofs intelli-
gently, we can ensure better generalizations. Below we illustrate
three classes of proof edits that we use to produce more broadly
applicable optimizations: sequencing axiom applications, remov-
ing irrelevant axiom applications, and decomposing proofs.

6.1 Sequencing axiom applications

Our generalization technique requires proofs to be represented as
a sequence of linear steps. However, proofs are often expressed as
trees, in which case one needs to linearize the tree before our tech-
nique is applicable. The most faithful encoding of a proof tree is to
use “parallel” axiom applications to directly encode the tree: each
step in the linearized proof corresponds to the parallel application
of all axioms in one layer of the proof tree. This encoding is the
most faithful linearization of a proof tree because the tree can be
reconstructed from the linearization.

In a traditional proof tree, two branches of a proof are essen-
tially applying axioms in parallel, meaning their assumptions are
checked independently and their conclusions are inferred indepen-
dently. In certain logics, it is possible to combine two axioms into
one “axiom” encoding both in parallel. For example, if we have the
axioms Yx.x + 0 = x and Yx.x — x = 0, we can combine them into
Vx,y.x+0 = xAy—y=0. This process can be described categori-
cally using coproducts, a concept closely related to pushouts.

For many, coproducts are best likened to sum types. A sum type
defines a type with two cases where each case has its own type.
Suppose the type of the first case is A, and the type of the second
case is B, and we refer to their sum as A + B. This sum type comes



with constructors, say t4 : A > A+ Band i : B —» A + B. This
sum type can be also be destructed using case-matching. Suppose
we want to define some function which takes an inhabitant of A+ B
and produce an inhabitant of some desired type C. We can split our
inhabitant of A + B into two cases and produce an inhabitant of C
in each case. Suppose f : A — € produces the inhabitant for the
first case, and g : B — C produces the inhabitant for the second
case. By using case-matching, we can combine these into a function
[f.g] : A+ B — C. More than that, we also have the property
that ¢4; [f, g1 is equivalent to £, and likewise t5; [£, g] is equivalent

to 4. All these properties make the “sink” A —% A + B «— B
a coproduct. The categorical definition of a coproduct is defined
below.

DermniTion 4 (Coproduct). A sink A YA+ B E B s said to
be a coproduct if, for any object C and morphisms f : A — C and
g B — C, there exists a unique morphism (denoted [f, g1) from
A + B to C such that the following diagram commutes:

A f

LA\

. A+ B------- > C
B
Bﬁ/

The coproduct operation + constructs the coproduct of two objects,
and the [, ] operation constructs the uniquely induced morphism.

In addition, we define the coproduct of two morphisms f : A — C
andg: B — Dasf+g = [fite,g:tn] : A+B — C+D. Intuitively,
f + g applies f to the first case and 4 to the second case.

. . . axiom|
Given two axioms expressed categorically as A; —— C, and

A, 2o, C,, we can construct the axiom encoding axiom; and
axiom, in parallel as axiom, + axjom, : A; + A, — €1 + C,. Given
an application app, : A1 — & of axiom; and an application app, :
A, — € of axiom, to the same instance €, we can use the coproduct
property to construct an application [app,, app,] : A1 + Ay — &
of the parellelized axiom axiom,; + axiom,. We have proven that the
pushout of this axiom application produces the same result (up to
isomorphism) of pushing out app, and then pushing out app, on the
resulting instance (and likewise for the reverse order). Thus, the
parallelized axiom does in fact encode both axioms together in an
order-independent manner. Using this encoding, we can encode a
proof tree by parallelizing all the axioms in the same layer of the
proof and then sequencing the layers of the proof.

At this point, we consider the impact that this process has on
proof generalization. Given two axiom applications for the same
instance, we now have the choice of sequencing these two appli-
cations or parallelizing them. First, it is the case that different se-
quences of the same axiom applications produce different, even in-
comparable, generalizations. Interestingly though, we have proven
that any sequential application of axioms always produces a more
general (or isomorphic) proof generalization than the parallelized
application. Thus, when given the choice, it is always better to ap-
ply axioms in sequence rather than in parallel, but unfortunately
there may not be an optimal ordering.

To demonstrate how this might happen, suppose axiom, is ¢; =
Y1 A ¢y and axiom, is ¢, = Y, A ¢1. The important property is that
axiom; implies axiom,’s premise and vice-versa. The parallelized
axiom would be ¢; A ¢ = Y1 AYs A ¢ A ¢po. Now suppose
in our proof instance we had assumed ¢; and ¢, and concluded
with @y, ¢», Y1, and ¥, and we want to generalize our proof in or-
der to weaken our assumptions but still infer ¢, and y,. If we use
the parallelized axiom, our generalized proof is no better than our
original proof. If we apply axiom; and then axiom,, our generalized

proof will only require ¢, to be assumed, since axiom, infers ¢,
as required by axiom,. If instead we apply axiom, and then axiom,,
our generalized proof will only require ¢, to be assumed, since
axiom, infers ¢, as required by axiom,. Thus, neither generalization
of either sequential proof is better than the other, but both gener-
alizations are better than that of the parallelized proof. The intu-
ition is that the parallel axiom requires the premise of both axioms,
whereas sequencing enables the first axiom to infer the premise of
the following axiom so that the second premise is not required in
the generalized proof.

This result suggests that our use of sequential proofs is not lim-
iting but in fact enables better generalizations of proofs. In our
implementation, our proofs have the property that sequential and
parallel forms all produce the same generalization though. This is
because the axioms used by our implementation can only interfere,
like in the example above, when one application is redundant, and
our implementation only produces proofs without redundant axiom
applications. This property simplifies our implementation since it
allows us to generalize axioms in any order and always produce
the same result. We have not, however, researched categorical tech-
niques for determining when axiom sets defined in arbitrary logic
will have this same non-interference property. We leave this to the
research domain of proof theory.

6.2 Removing irrelevant axiom applications

Sometimes certain axiom applications infer information that is ir-
relevant to the final property that we are interested in concluding.
An irrelevant axiom application can overly restrict the generalized
optimization by making certain equalities (those required by the
axiom) seem important to the optimization when they are not. Prior
to generalization, it is difficult to identify which steps of the proof
are relevant to the optimization. However, since generalization pro-
ceeds backwards through the proof, each step of the algorithm can
easily identify when an axiom application is not contributing to the
current property being generalized and simply skip it. In essence,
our algorithm edits the original proof on the fly, as generalization
proceeds, to remove steps not useful for the end goal.

6.3 Decomposition

As mentioned in Section 2.4, we decompose generated optimiza-
tions into smaller optimizations that are more broadly applicable.
We can view decomposition as taking the original proof and cut-
ting it up into smaller lemmas before applying generalization. In
the context of E-PEGs, performing decomposition requires us to
determine the set of inferred equalities along which we want to
cut the proof (the first step mentioned in Section 2.4). Formally,
we represent the set of cut-points as an object 8§ and a morphism
sub : 8§ — &,, where &, is the final inferred result of the proof.
Then, in each step of generalization, we check whether the current
property prop, being generalized is contained within sub by deter-
mining whether there exists a morphism from P, to § such that the
following diagram commutes:

axiom,, ?
Am > Gm me 8
appml l )/Prgpm lsuﬁ
> Em—l 8m T Sn

This morphism essentially describes how to contain prop, within
sub. If this is possible, we conclude “prop, implies prop,” as a
generalized lemma. We then continue generalizing, but now prop,
will be the conclusion of the next generalized lemma. We do this at
each point where prop, can be contained within sub, thus splitting
the proof into smaller lemmas each of which is generalized.



Optimization Description

LIVSR Loop-induction variable SR

Inter-loop-SR SR across two loops

LIVSR-bounds Optimizes loop bounds after LIVSR
ILSR-bounds Optimizes loop bounds after Inter-loop-SR
Fun-specific-opts | Function-specific optimizations
Spec-inlining Inline only for special parameter values

Partial-inlining
Tmp-obj-removal
Loop-op-Factor
Loop-op-Distr
Entire-loop-SR
Array-copy-prop
Design-pats-opts

Inline only part of the callee

Remove temporary objects

Factor op out of loop

Distribute op into loop to cancel other ops
Replace entire loop with one op

Copy prop through array elements
Remove overhead of design patterns

Figure 6. Learned optimizations (SR = Strength Reduction)

for (i=0; i<h; i++)
for (j=0; j<w; j++) =
img[i*w+j] /= 2;

for (i=0; i<h*w; i+=w)
for (j=i; j<i+w; j++)
img[jl /= 2;

(a) Concrete example

for (I=E;; I<Ez; I++) for (I=E;; I<E;*E3; I+=E3)
for (J=0; J<E3; J++) | for (J=I; J<I+E3; J++)
Eq(I*E3+]) E4 (D)

where E;, Ep, E3, and E4 are any loop-invariant expressions
(b) Generated optimization rule

Figure 7. Generalized inter-loop strength reduction

7. Experimental evaluation

We used the Peggy infrastructure [21] and E-PEGs to implement
our technique for generating optimizations (as was illustrated in
Sections 2 and 4). In this section, we experimentally validate three
hypotheses about our technique: (1) our technique allows a pro-
grammer to easily extend the compiler by sketching what an op-
timization looks like with before-and-after examples (2) our tech-
nique can amortize the cost of expensive-to-run super-optimizers
by generating fast-to-run optimizations and (3) our technique can
even learn optimizations that are significantly profitable on code
that the compiler was not trained on.

7.1 Extending the compiler through examples

When the compiler does not perform an optimization that the pro-
grammer would like to see, our technique allows the programmer
to train the compiler by providing a concrete example of what the
desired optimization does. By using our implementation to learn
a variety of optimizations in this way, we demonstrate experimen-
tally that our technique enables the compiler to be extensible in an
easy-to-program way, without the programmer having to learn any
new language or compiler interface.

The optimizations that our system learned from examples are
listed in Figure 6. It took on average 3.5 seconds to learn each ex-
ample (including translation validation). The only optimizations in
this list that are performed by gcc -03 are LIVSR and Array-copy-
prop. This demonstrates the benefit of our system: it allows an end-
user programmer to easily implement non-standard optimizations
targeting application domains with high-performance needs, such
as computer graphics, image processing, and scientific computing.

The LIVSR optimization was already shown in Section 2. Op-
timizations LIVSR-bounds through Loop-op-Factor will be cov-
ered throughout the remainder of Section 7. We start with Inter-
loop-SR and ILSR-bounds. These optimizations apply to a com-
mon programming idiom in image processing, which is shown in

len = array.length;

sum = 0;

= | for (i=0; i<len; i++)
sum += arrayl[i];

sum *= 7;

len = array.length;

sum = 0;

for (i=0; i<len; i++)
sum += array[i] * 7;

(a) Concrete example

X-0
X=0 )
while (E;) = | Whle (0
X += E; * E3 - = B2
X *= E3

where E3 is a loop-invariant expression

(b) Generated optimization rule

Figure 8. Loop-operation factoring

the left part of Figure 7(a). The img variable is a two-dimensional
image represented as a one-dimensional array in row-major form.
Programmers commonly use this kind of representation to effi-
ciently store dynamically-sized two-dimensional images. The orig-
inal code in Figure 7(a) uses a convenient way of iterating over
such arrays, whereas the transformed code uses the more efficient,
yet harder to program, formulation that programmers typically use
(it removes the multiplication and addition from the inner loop).
From the concrete instance, our generalizer determines that the img
array is actually insignificant (the only part that matters is the i*w
+ j computation); it determines that the starting point of the outer
loop is insignificant; and that the bounds on both loops can be gen-
eralized into loop invariant expressions. Furthermore, although we
show the learned optimization as one rule, our decomposition algo-
rithm would split this into two optimizations: one which optimizes
the body of the loop (Inter-loop-SR), and one which optimizes the
bounds of the loop (ILSR-bounds). A similar decomposition when
learning LIVSR would also produce LIVSR-bounds. Also, all our
generated optimization rules — including the one in Figure 7(b) —
can apply to programs containing other statements in the loops that
do not affect the significant program fragments being optimized.

When traditional compilers like gcc -03 do not perform the
optimization described above, an image-processing programmer
would be forced to use the more efficient but error-prone version of
the code. With our system, the programmer can use the simpler ver-
sion and rely on the compiler to optimize it into the more efficient
one. Furthermore, if the programmer encounters a new instance of
the programming pattern that the generated rule does not cover, the
programmer can train the compiler with another example. This sce-
nario emphasizes how easy it is for non-compiler-experts to benefit
from our system. Extending the compiler is as simple as provid-
ing a single concrete example, without having to worry about the
side conditions required for correctness or having to learn a new
language — like the language in Figure 7(b), including expression
variables like E; and side conditions like “E; is loop-invariant”.

We next show another example of an optimization not per-
formed by gcc -03, loop-operation factoring (Loop-op-Factor in
Figure 6). The concrete example that we used to sketch the op-
timization is shown in Figure 8(a). The multiplication inside the
loop gets factored out of the loop through the additions. The gen-
eralization that our system generates is shown in Figure 8(b). Our
generalizer determined that the use of the array is insignificant and
the format of the loop is insignificant, as is the constant 7, which
can in fact be any loop-invariant expression.

Finally, we show how our system can learn several optimiza-
tions for the power function from Figure 9. Starting with the con-
crete optimization instance pow(a, p) * pow(b, p) = pow(a
* b, p), our generalizer shows that the two concrete programs
are equivalent, and then generalizes the example into the optimiza-



int pow(int base, int power)
int prod = 1;
for (int i = 0; i < power; i++)
prod *= base;
return prod;

Figure 9. The power function for integers

tion Yx,y,z € int. pow(x,z) * pow(y,z) = pow(x * y,z). This
is an example of Fun-specific-opts from Figure 6. Similarly, we
were able to get our generalizer to learn the non-trivial optimiza-
tion: Yx € uint. pow(2,x) » 1 < x (which is an example of
Spec-inlining in Figure 6). Here again, neither of these optimiza-
tions are performed by gcc -03, whereas our approach allows the
programmer to easily specify these optimizations by example.

7.2 Learning from super-optimizers

Another possible use of our approach is to amortize the cost of run-
ning a super-optimizer. Given an input program, a super-optimizer
performs a brute force exploration through the large space of trans-
formed programs to find the (near) optimal version of the input
program. Our approach can mitigate the cost of running super-
optimizers by learning optimizations from one run of the super-
optimizer, and then applying only the learned optimizations to get
much of the benefit of the super-optimizer at a fraction of the cost.

The Peggy compiler at its core performs a super-optimizer-style
brute-force exploration by applying axioms to build an E-PEG that
compactly represents exponentially many different versions of the
input program, and then using a profitability heuristic to find the
best PEG represented in this E-PEG. To evaluate our approach in
the setting of super-optimizers, we used Peggy to super-optimize
some microbenchmarks and SpecJVM, and used our technique on
the original and transform programs to learn optimizations.

Several of the optimizations learned using before-and-after
examples in Section 7.1 cannot be learned by using the super-
optimizer — they really do require a programmer to give an
input-output example. For instance, if the Peggy super-optimizer
were given pow(a,p) *pow(b,p) to optimize using basic axioms,
it would not be able to find the desired transformed program
pow(a*b,p) because, even though it can decompose the original
expression into smaller pieces, it cannot guess how to reassemble
them into pow(a*b,p). However, Peggy can prove the original and
transformed programs equivalent because it sees the pow(a*b,p)
term to which it can apply axioms. In essence it is easier to apply
axioms on the original and transformed programs, and meet in the
middle, rather than derive the transformed program from the origi-
nal. With the proof, our approach can learn a new optimization that
the Peggy super-optimizer would not have performed.

Our super-optimizer experiments also show how inlining com-
bined with generalization produces useful and unconventional opti-
mizations. Inlining in Peggy simply adds the information that a call
node is equivalent to the body of the called function. Adding this
equality does not force Peggy to choose the inlined version; it just
provides more options in the caller’s E-PEG for the profitability
heuristic to choose from. When running on code that uses the pow
function from Figure 9, the super-optimizer applied the inlining ax-
iom on pow, thus pulling the body of pow into the E-PEG. Peggy
then exploited the fact that pow does not affect the heap to optimize
the surrounding context, but chose not to inline pow in the final re-
sult. From this our generalizer learned the optimization that pow is
heap-invariant; in future compilations, Peggy can immediately use
the fact that pow does not affect the heap to optimize the surround-
ing context without the expensive process of inlining pow. This is
an example of what we call partial inlining (Partial-inlining in Fig-
ure 6), where the optimizer exploits the information learned from

inlining without opting to inline the function. Another example of
partial inlining we observed involved a large function that modi-
fies the heap but always returns 0. By applying the inlining axiom,
Peggy was able to optimize the surrounding context with the infor-
mation that the return value was 0, but then chose not to inline the
called function because it was too large. In this case the generalizer
would learn that the function always returns 0, which can be used
in future compilations without having to apply the inlining axiom.

We evaluate the effectiveness of amortizing the cost of a super-
optimizer on the SpecJVM suite. For each class in SpecJVM, as
a first step we used the Peggy super-optimizer to compile the
class using basic axioms, and used our generalization technique
to generate a set of optimizations for that class. As a second step,
we removed all the basic axioms from Peggy and re-optimized the
class using the axioms that were learned in the first step. Across
all benchmarks, it took on average 11.15 seconds to generalize a
method, and the average cost of compiling each method went down
from 26.64 seconds in the first step to 1.47 seconds in the second
step, while still producing the same output programs.

These experiments show that, for expensive super-optimizers,
our technique can improve compilation time while still produc-
ing the same result. Furthermore, our benchmark-specific optimiza-
tions can still apply even if small changes are made to the code.
As a result, we can avoid a super-optimizing compile after each
small change, while still retaining many of the benefits of the super-
optimizer. Eventually, however, the learned optimizations will go
out of date, at which point a super-optimizing compile would be
needed. Thus, we envision that our approach could be used to per-
form an expensive super-optimization run every so often while us-
ing the generated optimizations in between.

7.3 Cross-training

The above experiment illustrates the benefits of learning optimiza-
tions when compiling exactly the same code that was learned on.
We now show some encouraging evidence that even cross-training
is possible. Our hypothesis is that many libraries are used in styl-
ized ways, and so training with Peggy’s super-optimizer on some
uses of a library can discover optimizations that would be useful on
previously unseen code that uses the same library.

We conducted a preliminary evaluation of this hypothesis on
a Java ray tracer that uses a functional vector library. Peggy’s
optimization phase improves this benchmark’s performance by 7%,
compared to only using Sun’s Java 6 JIT, by removing the short-
lived temporary objects (Tmp-obj-removal in Figure 6).

Most of these gains come from one important method, call it m.
We identified another vector-intense method, call it £, to train our
learning optimizer on. Using only the axioms learned from opti-
mizing the expressions within £, Peggy was able to optimize m to
produce a 3.1% runtime improvement on the ray tracer, instead of
the 7.1% speed-up gained by fully optimizing m. Alternatively, us-
ing a slightly larger training set produces a 5.1% speed-up. Upon
further investigation, we found that the learned optimizations per-
form large-step simplifications of common usage patterns of the
vector library (for example, a vector-scale followed by a vector-
add). Furthermore, if in addition to the learned optimizations from
either training set, we allow Peggy to also use those original ax-
ioms which infer equalities without creating any new terms (41%
of all axioms), Peggy produces the fully optimized m. The purpose
of these axioms is to simplify a program, so they cannot lead the
optimizer down a fruitless path. Using simplifying axioms alone on
m produces only a 0.6% speed-up. Thus, the optimizations learned
from either training set lead the optimizer in the right direction,
and the remaining axioms simplify the resulting expressions into
the fully optimized m. These findings show that our technique can
be effective at cross-training even on a small training set.



8. Related work

There has been a long line of work on making optimizers extensible
or easier to develop, including Sharlit [22], Whitfield and Soffa’s
Gospel system [23], the Broadway extensible compiler [11], and
the Rhodium system for expressing optimizations [14, 15]. In all
these systems, however, the programmer has to learn a new lan-
guage or compiler interface to express optimizations. In contrast,
our approach learns an optimization from a single example pro-
vided by the programmer in a language already familiar to them.

In the context of machine learning, our approach is an instance
of Explanation-Based Learning (EBL) [9]. EBL refers to learning
from a single example using an explanation of that example. EBL
has been applied to a wide variety of domains, such as Prolog op-
timization [10], logic circuit designs [8], and software reuse [3].
Many of these applications use algorithms based on unification or
Prolog [7, 8, 10]. The declarative components of Prolog can be en-
coded in our framework by combining categories of expressions
with categories of relations. Furthermore, most EBL implementa-
tions provide no guarantees on what is learned, while we can prove
that our technique learns the most general lesson for a given expla-
nation. Within EBL, our work is closely related that of Dietzen and
Pfenning [7]. They use AProlog to extend EBL to higher-order and
modal logic, and apply this framework to various settings including
program transformations. However, they do not investigate ways
to automatically train the optimizer, relying instead on the user to
prove the transformation correct using tacticals. As a consequence,
they do not attempt to decompose an optimization into subopti-
mizations, since a user manually proving an optimization would
already do this. Furthermore, we experimentally demonstrate that
generalization can be useful for extending compilers and amortiz-
ing the cost of super-optimizers.

Aside from EBL, there have been other uses of machine learning
in the context of compiler optimizations. Techniques like genetic
algorithms, reinforcement learning, and supervised learning, have
been used to generate effective heuristics for instruction schedul-
ing [17, 20], register allocation [20], prefetching [20], loop-unroll
factors [19], and for optimization ordering [4]. In all these cases,
the parts being learned are not the transformation rules themselves,
but profitability heuristics, which are functions that decide when
or where to apply certain transformations. As a result, these tech-
niques are complementary to our technique: we generate the opti-
mization rules themselves, but not the profitability heuristics (we
use a single global profitability heuristic for all optimizations).
Also, while modern machine learning techniques use statistical
methods over large data sets, our EBL-based approach can learn
from a very small dataset, even from just one example.

The idea of discovering optimizations has also been been
explored in the setting of super-optimizers [2, 13, 16]. Super-
optimizers try to discover optimizations by a brute-force explo-
ration of possible transformed programs for a given input program.
Traditional super-optimizers find concrete optimization instances,
whereas our approach starts with optimization instances, and
tries to generalize the instances into reusable optimization rules.
As such, our work is complementary to super-optimization tech-
niques. However, Bansal and Aiken’s recent super-optimizer [2]
does achieve a simple form of generalization, namely abstraction
of register names and constants. In contrast, we perform a more
sophisticated kind of generalization based on the reasons why the
original and transformed programs are equivalent.
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