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Abstract: A novel method that converts a semiconductor Transient
Thermal Impedance Curve (TTIC) into an equivalent thermal R-C
network model is presented. Thermal Resistance (R) and thermal
Capacitance (C) parameters of the model are identified using
manufacturer's data and off line Recursive Least Square (RLS)
techniques. Relevant estimation theory concepts and the formulation
of an appropiate model for the identification process are given.
Model synthesis is illustrated using an isolated base power transistor
module. The application of time decoupled theory for high order
thermal models is outlined. Simulation of junction temperature
responses using model and manufacturer TTIC's are compared.
Identified parameter validity is further confirmed by parameter
calculation obtained from module physical dimensions.

I. Introduction

Power converter manufacturers typically utilize the relatively low but
significant thermal heat capacity of power semiconductors to obtain
short duration overload ratings well in excess of continuous ratings.
The methods for determining the peak allowable junction temperature
[Tj(max)] under transient and intermittent loading are well
established and have remained essentially unchanged since 1959 [1).
The standard approach uses the TTIC supplied by device
manufacturers (Fig. 1a). Junction temperature response to device
power pulses are estimated from this curve and the principle of
superposition for conditions such as single pulse overload, repetitive
pulse overload, overloads following continuous duty and irregularly
shaped power vs. time profiles. Indeed, power transistor Safe
Operating Area (SOA) limits are usually based upon this approach
[2-5]. However, transient junction temperature estimation using the
TTIC approach has several shortcomings.

(i) a-posteriori calculations - Circuit simulation programs
containing sophisticated device models exist that can calculate
instantaneous power vs. time profiles [6-7]. However, instantaneous
junction temperature vs. time profiles cannot be solved with the TTIC
concept until the entire overload simulation process is complete,
stored in memory and broken down into equivalent pulse amplitude
and durations. This inefficiency suggests the use of a device thermal
model (Fig. 1b & Ic.) for maximizing simulation capability by
solving both the electrical —and thermal network models
simultaneously.

(ii) graphical analysis- The standard TTIC approach requires
cumbersome graphical analysis to transform the irregularly shaped
power profiles, such as the switching and conduction loss profiles in
SOA calculations, into equivalent energy [watt-sec] "square” power
pulses upon which this curve is based.

(iii) repeat calculations - Each application of a new overload
sequence requires Tj to be recalculated.

(iv) desired accuracy - The accuracy of estimated junction
temperatures decreases for increasingly complex overload waveforms
such as Pulse Width Modulation (PWM) acceleration of a motor.
When using the standard approach, gross simplifying assumptions
are ngi:essary to keep graphical analysis and hand computations
tractable.

The shortcomings of the standard approach suggest the need to
develop an accurate thermal model to make better estimates of 7;.Use
of a device thermal model for indirect measurement of the junction to
case temperature rise {ATjc} may result in improved converter fault
diagnostics. Indirectly calculating ATjc in real time may be done with
the discrete transfer function model of Fig. 1b and a Digital Signal
Processer (DSP) / microprocessor or an analog operational amplifier
model of Fig. 1c. In addition, potential advantages in substantially
increased converter overload ratings exist when using the ATjc
"observer" based model in real time adaptive control [8].

In this paper, a new approach to the problem of determining device
thermal characteristics is presented from the System Identification
point of view [9]. Sections 2 and 3 outline the basic identification
procedure used and the governing laws for device thermal model
building. Sections 4 and 5 review and apply estimation theory
principles to determine the R-C parameter values given the
manufacturer's TTIC curve. Section 6 presents identification results
for an isolated base transistor model example and discusses
parameter accuracy of the identified R-C values.
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Fig. 1a Semiconductor Transient Thermal Impedance Curve (junction-case)
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Identification Procedure

The success or failure of any application of system identification rests
on finding an algorithm that can intelligently utilize apriori
information. The thermal estimation problem has three main features
which can be exploited. First, the structure of Fig. 1c¢ is known from
physical grounds to closely model the thermal behavior of the
system, even though the exact values of the R's and C's are
unknown. This suggests that one of the parametric identification
methods should be applicable. The second feature is the TTIC curve,
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which can be used to construct simulated input/output pairs to
sufficiently excite the identification procedure. The third feature is
that the thermal time constants have a wide time scale separation. In
many identification setups, this would be a serious problem becuase
it is difficult to excite all modes of the system wihout an inordinately
large number of time steps. Since this time scale separation is known
to exist apriori, however, we are able to exploit it by identifying the
slow and fast modes seperately via a time decoupling approach.
Figure 2 defines the 4 basic steps used [10].

(1) Model Formulation : The type and order of the thermal model
structure  are defined from a-priori knowledge about the
semiconductor. Some numerical constants of the model can also be
obtained a-priori by applying Newtons Law of Cooling. Discrete
state space equations are derived based upon the physical model.

(2) Design of Experiment : The input signal, sampling interval and
experiment length are chosen so that appropiate modes of the
thermal model are sufficiently excited for identification.

(3) Parameter Estimation : This step determines the numerical values
of the model structure. The choice of algorithm is the off-line direct
method of Recursive Least Squares (RLS). The method shown in
Fig. 3 is based upon the fact that the collected output responses are
linearly dependent on the unknown parameters where;
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Fig. 3 Parameter Estimation Technique
k = Discrete sampling time
u(k) = Input power pulse sequence into the device.
y(k) = Calculated junction-case temperature response ,Tjc(k)
:v\(k) =Estimated junction-case temperature response ,/%jc(k)

k) = Output error equation between true Tjc(k) and
estimated /%jc(k) TESPONSeES.

The basic scheme is to use a well planned input power sequence
which has a sampling interval shorter than the fastest time constant
and an experiment length that is longer than the slowest estimated
time constant of the thermal model. True junction temperature
response, Tjc(k), to u(k) is calculated using the manufacturers
TTIC. T,Pe same input test signal is also applied, restarting at z = 0,

to the ®jc model and Q(k) is calculated for each time instant k. The
RLS algorithm attempts to drive the y (k) error to zero at each & by
adapting the unknown parameters @Ajc . The estimated numerator
and denominator coefficients of @Ajc converge to steady state values
for a properly designed input test signal. The actual Resistance and

Capacitance values may then be determined from these coefficients
using the initial model equations formulated.

(4) Model Verification : This step relates the identification (ID) results

A
to well known physical results. Comparison of Tjc(k) vs. Tjc(k)
and Manufacturer's TTIC vs. an estimated TTIC curve are made.
Additionally, identified R and C model parameters are compared to
calculated R-C values obtained from measurements of an actual
semiconductor. These 4 steps are now examined in more detail.

III. Model Formulation

Transient Thermal Impedance Curve:

The semiconductor thermal model structure is implicitly contained in
the TTIC as a complex sum of R-C exponentials. It is therefore

desirable to review the definition, derivation, assumptions and
application of this curve. The concept of thermal resistance is based
upon an analogy between electrical and thermal systems with
temperature[°C], heat flow due to power dissipation [Watts] and

thermal resistance [°C/W] being analogous to voltage, current and
electrical resistance [11]. The TTIC in Fig. 1a is obtained by
applying a single “square” power pulse "PI" to the device until the
Junction temperature reaches steady state at time fss. Junction
temperature rise { A7jc } is determined by fixing the case constant at
ambient temperature {Tc=Ta} and measuring device temperature with
infrared methods or electrical Temperature Sensitive Parameters
{TSP} such as forward voltage drop {Vf} or base emitter
voltage{Vbe} [12]. The actual ATjc rise is found by correlating the

measured change in Vbe (= 2mv / °C / junction) vs. time to a
previous calibrated Vbe vs Temperature test for constant Ta and base
current.The transient thermal impedance is defined at any timer as

_ ATje()
R 3

Ojc(r) = ﬂ(')lngC(’) )

The thermal system is assumed to be linear, and hence superposition
can be applied to the TTIC. The TTIC is a "step response” curve with

zero initial conditions, relating device step input power to ATjjc at the
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Fig. d4b Equivalent Heating and Cooling Pulses

output. The power profile in figure 4a can be separated into
equivalent heating and cooling pulse durations of zx and ty as shown
in Fig. 4b. The junction temperature rise can be determined by
adding individual Tjc pulse responses [1].

ATje(t) = P1* @jc(iy)
ATje(i2) = P1* @jc(tz) - P1* Ojcltz-11) + P2 * Qje(tz-11)

2
3
The published TTIC is usually higher than the tested value to account

for manufacturing variations and the increase in thermal resistance
over time.
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Fig.§ Model Order Dependent on Semiconductor Package
A-priori Knowledge

Knowledge of the physical properties of the semiconductor can be
used-to fix the model structure and order, and to determine some
numerical values of the "Black Box" shown in Fig. 1c. The use of all
available a-priori knowledge prior to application of the identification
algorithm is important since misleading results due to an assumed
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wrong structure are difficult to detect from data alone. Also, a-priori
knowledge can enhance model validity and model accuracy. An
appropriate model can be formulated using (i) physical knowledge,
(ii) I/O measurements, or both,

(i) Physical Knowledge: The model order is dependent on the type of
semiconductor package used as shown in Fig. 5. The exact order
can be determined by visual inspection of the package cross sectional
view and replacing significant heat capacity materials (Cu,Si,Mo)
with thermal capacitances. The number of capacitors determines the
model order. One dimensional heat flow from junction to case results
in the typical R-C network structure shown in Fig. lc. Numerical
values for RS and C4 of the copper base can be obtained without
package dis-assembly by applying the governing thermal laws
defined in Appendix 1 to a 4th order 50 Amp isolated base transistor.

[*C/W]
[W-s/°C]

C)
5

Ri=L, /(K * Ae)
Ci=p*Cp *V

Thermal resistance and capacitance calculations can be extended to
RI-R4 and C1-C3 by dis-assembling the package and physically
measuring each material thickness and cross section area
perpendicular to heat flow. This "Calculated Parameter" approach is
documented in Appendix A1 with the results shown in Table 1. An
analog simulation of this R-C structure is plotted in Fig. 6 vs. the

actual TTIC. This procedure alone may produce sufficient 6jc()
accuracy for the intended use of the model.
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Fig. 6 Transient Thermal Impedance Curves

(ii) 1/0 Measurement: The asymtotic behaviour at the origin and
steady state time tss of the manufacturer's TTIC in Fig. 6 can provide
numerical values for parameters R/, CI and for the sum of R/ thru
RS5 in Fig. lc. The horizontal asymtote at the origin reflects the
silicon thermal resistance R1. The initial slope near the origin of Fig.

6 can = silicon thermal capacity by the analogy to i=C / (dV/dT):

Power =C1 ATj[° C]/ A Time[sec] [Watts] ©6)

€1 =P*(u-19)/ P*(&1)- By)) [W-§/°C1 ()

The sum of RI-R5 is the "DC gain" of the mathematical transfer
function model and is the value @jc(tss) read from the TTIC.

8 Parameter Initialization Procedure

As an altenative to the physical R-C calculation procedure above, the
following procedure may be used to find initial estimates for the RLS
identification algorithim using only TTIC information. Although this
method involves crude approximations, it is helpful in estimating the
model time constants for selecting a suitable RLS sampling time and
providing parameters sufficiently close to the actual so that the RLS
routine converges rapidly.

The following known data in Eq (8a-8d) can be obtained from the
manufacturer's data specification sheet, the TTIC of Fig. 6 or from
external physical dimensions.
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Rspec = (R1 +R2 + R3 + R4 ) + RS (8a)
R5 is calculable from baseplate case thickness dimensions (8b)
R1 is from the TTIC as in the previous section (8¢c)
74 is from the TTIC since tgp is known and is Sty (8d)
Crude approximations for a n = 4th order system are:

tend= [5t4]= S[(RI+R2+R3+R4)]C4 (8e)
4 = [513] = 5[(RI+R2+R3)]C3 (8f)
3 =[5Sn]l= S[RI+R2)]C2 8g)
T =[5 = S[(RI*CI)] (8h)
7 = [RI*CNl= [tend!5" (81)

Thermal capacitance is assumed to be increasing by a constant factor
MF; from one stage to the next.

C2=MF;+CI (8 C3=MF;+C2 (8%)
C4=MF3+C3  (8) C4/CI=MF;*MF; «MF3 (8m)
MF;=(C4/CI)1/3 (8n)

Parameter C4 is found using Eq(a, b, d & €). Capacitor C! is found
using Eq(c & i). Capacitors C2 & C3 are extracted from EqG, k, &
n). Resistor R4 is found by solving for the {RI+R2+R3 } sum of
Eq(f) and substituting into Eq(e). Resistor R3 is found by solving
for the sum {R7+R2} of Eq(g) and substituting into Eq(f). Resistor
R2 is calculated directly from Eq(g). Table 1 summarizes the
Estimated R-C parameter results for the known data shown below.

tend =18sec.  Rspec=0.41[°C/W] RI=0.008[°C/W] R5=0.0106[°C/W]
Table 1 Calculated & Estimated R-C Parameters
R1 R2 R3 R4 RS Cl c2 C3 4
Calc. 0006 0.111 0.122 0.166 0011 0033 0.148 1.180 9.500
Est. 0008 0.022 0078 0291 0011 0360 0488 0665 0.900
Assumptions

The thermal model for Fig. 1 and Fig. 5 is assumed to be a linear ,
nth order lumped parameter, time invariant, deterministic, Single
Input Single Output (SISO) system. Nonlinear radiation effects
which are proportional to the 4th power of temperature are not
significant since one dimensional heat flow is mostly by conduction.
However, silicon conductivity is nonlinear with temperature varying
2:1 over the 25-150 °C operating range and may effect the estimates
of the RI & R2 thermal resistances. Also, some insulators such as
BeO will vary by 20% over the same range. The present procedure
ignores these nonlinearities, though their incorporation into the
design procedure is an important area for further investigation.
Lastly, measurement noises are assumed negligable.

Equations
A thermal model can be formulated using either an internal state space

or 1/O transfer function model approach. The first method is the most
desirable since it is directly related to the physical structure of Fig.
Ic. However, the need to measure the internal states (x7, X2, X3, X4)
to find model coefficients precludes its use. The transfer function
approach must be used since only I/O data from the TTIC is

available. The disadvantage of this approach is that the 8jc model
coefficients obtained from I/O data have no direct physical meaning.
The R-C parameters of the structure are hidden in the numerator and
denominator coefficients and must be further extracted. The transfer
function model is developed in the continuous time domain and must
be further discretized for use in the identification algorithm.

Continuous State Space Model

The system equations for the 4th order structure in Fig. 1c can be
obtained using the capacitor voltages (temperatures) as the state
variables (xj,x2,x3,x4). The output equation variable (Y)
represents the silicon absolute junction temperature T;. The input
variable (u) represents the device power in watts. "f‘he transfer

function &)jc reflects the temperature rise for a given power input .
It is derived by applying the Laplace transform operator {s) to



Eq(9a), solving for X and substituting into Eq(10a).

.

X = AX + Bu rec/ay (9a)

Y = CX + Du [°C} (10a)
Y/u=C(sl -A)y!B +D Fo/w]  (11a)

where B:(El-l—,O,O,O)T . C=(1,000T, D =Rj, and

-1 1
R2C1  R2CI 0 0
-1 -1 1 1 0
R2C2 \R2C2 ~ R3C2 R3C2
A= 1 B 1 1
0 R3C3 R3C3 ~ R4C3 R4C3

1 -1 1
0 0 R4Ca (R4C4 : RSCA)

The symbolic transfer function corresponding to Eq(11) contains 4

numerator and 4 denominator coefficients in the s9 to s4 powers.
Determination of the R-C parameter values requires simultaneously
solving the 8 coefficient equations. Four of the 8 coefficients each
contain 21 nonlinear sum and product terms of the form 1/(RxCy),
which makes solution a formidable task. Using the apriori
knowledge that the values of the capacitors are widely separated in
this 4th order thermal model, the above equation can be split into two
cascaded 204 order systems which match the dc gain and overall
dynamics of the original system. Thus, only simpler 2nd order
equations need be developed using x7, x2, R1, R2, R3, CI and C2.

-1 1
. e YTy 1
x1 R2C1 R2C1 x1 L
(x'Z)= 1 1 1 (x2 )*[Cl JP (12)
R2C2 \R2C2 ~ chz) 0
Y=[ 1 0 ] XT +[R1]P (13)

This is the time scale decoupling, and is possible whenever the
unknown system has widely separated modes. In essence, the
identification of the slow modes is conducted separately from the
identification of the fast modes.

Discrete Transfer Function Model

In order to utilize an appropriate identification algorithm, the
continuous system (12) and (13) must be discretized for computer
implementation. There are several possible methods such as Eulers
methods, Tustins approximation, step invariance, etc. An infinite
series approximation was chosen because it leads to relatively simple
equations relating the RC parameters to the filter coefficients. The
discrete system equations are defined using the time shift operator,

{q}.

X(k+1)=q X(k) = @ X(k) + I'u(k) [ec/an (14)

Yk) =C X(k) + D u(k) [°C] (15)
The pulse transfer function is derived by solving Eq(14) for x(k) and

substituting into Eq(15) [13].

@I}‘c(k) =Y(k)/u(k) = C(ql - &)>1r + D [c/w] (16)
where h = sample interval
&= state transition matrix
@ = ¢Ah = [ + AR { first order approximation}
an

r= jh eAldl B

0
Performing the matrix operations and applying the backward shift

operator (g-!) yields the standard digital filter format with the
coefficients defined in Appendix A2.
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oA A bo+bl1gl+bg? 18
ea.b) fieb) -t s) @
A
where 0 =[ay, a2, by, by, b2 1T
n = order of the numerator =2
m = order of the denominator = 2
The linear difference equation for the system is;
y(k) = a1 y(k-1) + ap y(k-2) + b u(k) + byulk-1) + bou(k-2) (19)

Discretization Error

Substitution of ¢ = 1 into Eq(18) provides an estimate for the
discretization error due to a first order approximation for the state
transition matrix.

A A A A
€c(1,0)=H(1,6) =|| Rj+ Ry +R3 |- {0.5h/CI} (20)

The first term is the correct DC gain of the 21d order system while the

second term is due to the O(43) error defined in Appendix A2. This
term is negligable for small sample times used in identifying the fast

time constants but can lead to large dc gain errors (= 30%) in y(k) for
large sample time {4}.This is further detailed in Section VI.

Parameter Error Estimation

A worst case steady state error bound estimate for parameter R; due
to Eq(20) can be derived using the standard rule of thumb that the
system is sampled 10x faster than the fastest time constant to be
identified.

(h*0.5/ CJ}=[T%’§¥)(30—75—):(% )= +- 5% |IRill (21)

R-C Parameter Extraction from Filter Coefficients

The five R-C parameters may be found by simultaneously solving the
5 coefficient equations in Appendix A2. A convergent solution is
obtained if the O(k3) error term in the by equation is eliminated before
solving. The parameter solution equations [22-26] must be solved in
the sequential order as shown . These equations were solved by hand
using the variable substitution method and verified using the
symbolic equation solver Mathematica [14].

Rl = by 22)
Cr=hay /{bo[ (a1-a2)+(b2-b1)/bo 1} (23)
R2=(-05)h2 /{bgCI2[(b1/b0y-a1] -CIh} 24

C2=h/{Ry {{a1 + 2.0 - (WR2C]) ] - (a1 + a2 + 1L.OYR2C1/h)}}(25)
R3 = h2/ {C1C3Ry (a1 +ap + 1.0) } (26)

IV. Design Of The Experiment

Standard Identification Procedure
In the semiconductor thermal model structure of Fig. lc, the time

constants (7;) cover a 1500:1 range from psec to seconds.
Identifying these major time constants by standard identification
methodology requires multiple "trial & error” ID applications, since

coefficient accuracy tends to degenerate for systems with 7's having
more than 2 decades of time separation. Such experiments to identify
the 7's require engineering tradeoffs regarding sampling time [Ts],
experiment record length, and input signal amplitude. Proper
identification of the fast time constant requires a high sampling rate,
identification of the slow time constant requires a long record of
input/output data. Together, these imply a cumbersome and poorly
conditioned identification setup. One approach is to collect a number
of experiments and to average them to obtain an averaged transfer

A
function model that drives the y(k)- y(k) error to zero for a specific
time region of interest. Further, ambiguous sets of R-C parameters
may result if the R-C Extraction procedure of Section Il is applied to
such "averaged" models.

Proposed Time Decoupled Theory (TDT)

The disadvantages of widely separated time constants can be
circumvented since we know apriori that such a separation ex1sts.



The basic strategy of time decoupled identification is to run two
"separate” identification procedures, one for the slow modes and one
for the fast modes. Besides the advantages of tailoring the sampling
rates and record lengths to the expected order of magnitude of the
time constant, this decoupling allows a simpler R-C parameter
extraction procedure. Figure 7 conveys the TDT procedure as applied
to the 4th order semiconductor module example. The 4th order model
is decoupled into two independent 2" order systems. The split
model is reasonable given the analogous electrical model where a
high frequency device power sequence of short experiment length
will charge CI and C2 while leaving C3 and C4 virtually
unchanged. Similarly, the fast modes will be virtually invisible to a
step inputs with a slow sampling rate. The basic TDT concept
involves using multiple identification runs to estimate the 4 major
time constants in succesion from the fastest to the slowest.

Tj 2nd Order —
P © jc Model

RI

R2 Cc1

R3 c2

(a) Identifying the Fast 1's
Tj 'Z\nd Order | — o Tc
h =Tslow ©jc Model

I4 RI+R2 +R3 =RI

RIS R2 C3=Cl1

R5 = R3 C4=C2

(b) Identifying the Slow 1 ‘s

Tj —
J h 2nd Order 2nd Order °Tc
p 8 jc Model © je Model
Fast Slow
—o

(c) Connecting the Split Models
Fig. 7 Time Decoupled Theory Procedure (TDT)

The fastest time constant [7] of Fig. 7a is identified by suitable
selection of (i) a sampling rate that is fast enough for the estimated
[71] to be identified, (ii) a persistently exciting device power
sequence, (iii) an experiment record length long enough to allow for
parameter convergence and (iv) using all available a-priori knowledge
for RI, R2, R3, Cland C2 ininal estimates. True junction
temperature y(k) is calculated using the TTIC. The identified @; and b;
coeffiicents will typically converge in less than k = 15 samples. The

5,- parameters are then passed to the R-C extraction procedure.The
newly updated values for R7 and CI will be very close to the actual
values while R2, R3 and C2 values will be relatively inaccurate.

The ID procedure is next repeated using the R-C parameters from the
previous run as initial a-priori estimates. The sampling rate is now
chosen to be greater than Ts; but still fast enough to identify the

second guess-timated time constant 77. Application of the ID
algorithim and parameter extraction procedures will modify R2, R3
and C?2 to the correct actual values while the faster RI-C1 parameters
will remain unchanged.

To identify the slower time constants [73 & 4], the split model of
Fig. 7b is used with the same second order equations as was used in
Fig. 7a. A key parameter change is the substituion of {RI+R2+R3}

= RI to maintain the TTIC overall DC gain and slower system
dynamics. The sampling rate is selectively increased and the ID & R-
C extraction procedures are similiarly repeated to find' R4, RS, ,C3
and C4 in about 2 or 3 ID runs. Some systems may require repeating
this fast / slow indentification procedure to more accurately identify
the interconnecting R3 element in Fig. 7¢c. Considerations for
choosing a suitable sampling rate, experiment length and input signal
amplitude are now discussed in more detail.
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The amplitude of the device input power signal should be as high as

allowable to improve accuracy. The form of the input signal should
(1) consist of square pulses so that the TTIC curve for y(k)
calculation may be directly used. (2) have a random amplitude vs.
time profile to allow ID convergence to a unique set of parameter
values. (3) never have a non-realistic negative power pulse. (4)
ideally result in rated 7 for rated power {Prated} with steady state
thermal resistance at T¢ = 25 C. These constraints are met by taking
a pseudo random sequence consisting of the first positive 50 digits of
pi (0-9). For long sequences, the "average" random digit value
approaches 5. The u(k) amplitude equation used is:

u(k) = 2.0 * Prated *{Random digit}) / 10 27)

To help identify longer term dynamics, six similiar amplitude
pulses { eg.. u(1) to u(6) } were grouped together before the next
allowable amplitude change .

Sampling Time

The Nyquist theorem determines the minimum sampling rate to use
for each ID run. A commonly used practical rule of thumb is to
sample 10x faster than the fastest time constant to be identified.

h = Tgnallest /10 (28)
Experiment Length
Parameter accuracy is dependent on the record length so that a
sufficient amount of data points is available to give long term
dynamics. The RLS parameters theoretically converge in = (n+m)
steps for a white noise input [15]. For the random step input

sequence, 4 to 15 sample intervals were typically observed for 6;
parameters to converge.

{k}length =(4t015)*h (29)

Test Case

To verify the accuracy of the collected ID parameters, an analog
ACSL [16] simulation of the R-C parameters for a single step input
power pulse is done to compare the final estimated and actual TTIC.

A test case utilizing the calculated transistor thermal parameters of Al
& A2 was used to verify the TDT prodcedure. As a first step, the
linear difference equation Eq(19) was used to calculate the true y(k)
rather than the actual TTIC. The final results are found in Section VI.

V. Parameter Estimation

Method
The goal of the identifier block in Fig. 3 is to determine unknown a;

- . ) . .
and bj filter coefficients of the parameter vectorf in ©jc(q,6 )
Deriving a control law for parameter estimation from the parameter

A
vector error [ 6; - 6;] is not possible since §; parameters are not

directly measurable. However, a prediction estimate ;1\ (k) for every
measurable / calculable y(k) can be formulated. If a linear model is

A
assumed, then the resulting prediction error estimate [y(k)- y(k) ] is
a function of 6 as shown in Eq(19).

A
error (k,8) =y(®) - (k) (30)
Various methods that minimize the sum of the squares of this
prediction error are Maximum Likelihood, Least Mean Squares,
Extended Least Squares and Recursive Least Squares. The RLS
method was chosen since it is computationly fast, requires no matrix
inversions, and tends to converge rapidly. Observed convergence
rates for the 21 order model varied from 4 to 8 amplitude step
A
changes, depending on the closeness of the 6; initial guesses. Thus,
only a small number of y(k) ca/l\culations using the TTIC are required.
A disadvantage of RLS is the 6; "biasing" toward wrong values as &
—> o when the process output y(k) is measured in the presence of
noise. However, in this application, y(k) is virtually noiseless since

the primary source of noise appears to be interpolation errors when
reading the TTIC curve.



Solution )
A recursive identifier is one in which both input u(k) from{k =0 to
N - 1}and output y(k) measurements from {k =1 to N} are made

and inputed to the estimator to determine the parameter vector
A . .
0.The symbol N is the total number of sampling intervals over

which the data is collected . The minimization process requires N >
n+m to effectively average out error residuals.

Defining the data regression vector as (31), then the error at any
A
given time k=7 as a function of 8 is given by Eq(32).
0]

y(k +. 1- n)

wern=| Y0 emor 8) =) -xT(n) 8 (32)

(€19}

(k+1-m)
The error vector equation and the error vector, output vector and

regression vectors collected from from time 1 to N is thus:

e(N,0) = YON) - ¥(N) (33)
where
em9) y() TxT(n)
1,6) . x{n+1)
ew.6)y=| M * YN = Y(N) = )
. y(i+1) TN
E(N’é‘) y(N) xH(N)
c 9‘N—n+1 e ‘R(N_TH” x (nx m+1) e g{(N—'qH) X (n x m+1)

The optimal 8 is the one that minimizes Eq(33)Aerror in a least square
sense. This requires a performance index J(N, 9) taking the gradient
A

9J/9 0, and setting it equal to zero. This results in the well known
least square solution of Eq(35).[15]

N
A A A
IO, 8y = 2. etk 8) ek, 6) (34)
k=7
a1 = ey YT YNy = PIMYIV) (35)
8N+1] = PIN+1] YIN] . (36)

The optimal coefficients & will exist if the psuedoinverse P[N] is
nonsingular.This condition is satisfied assuming persistant
excitation, which is guaranteed by selecting the amplitude of u(k)
randomly for times up to k=N by using a pseudo random

sequence. As new data arrives {u(N),y(N+1)}, the objective of RLS

A A A
istoupdate 61N 1 to 6N + 1] in terms of the old data and O[N]
vector and similiarly update P[N} to P[N+1]. The P[N+1] matrix in
Eq(36) can be related to P[N] without inversion via the matrix

A
inversion lemma [17]. Thus O[N + 1] can be related to  6[N]
without inversion by

B+ = Bk) o+ LG+ Oyk+D-xTh+DOK)] 37

new estimate = old estimate + correction term

where Gain Matrix

New Data Measured

Lk+1)
yk+1)

A
AT+ 1) 6(k)
correction term

tarting Conditions
A
A first estimate for [N ] without inversion may be obtained using
the a-priori knowledge of Section III Parameter Inializtion Procedure.

Alternatively , Soderstrom's suggested starting conditions for 3[N ]

and P[N] can be utilized. Two initial conditions for y(k) must be

calculated for the 27d order model , thus starting the process at k = 2.
1

nn

Prediction of y (k+1)
Gain * (y Output Error Equation )

BIN] =0 a=(10/n)Y Y40 (38

k=0

PNl =a *1

Algorithim
The identification scheme [18] used for the computer program is:

(0) Initialize é[N] and P(N) ;setk=2
(1) Form x(k+1) data vector =(n+m+1)* 1 matrix for SISO system
(2) Update L(k+1) = [1/7] P() x(k+1) {1/ + [ x T(k+ 1)1 Pk) x(k+1) )1
where Y =1
a =1
{ }! = simple inverse of a scalar value
Lk+1) = (n+m+1) x 1 matrix
Py = (n+ m+1)x (n +m+1) matrix
xk+1) = (n+m+1) x 1 vector
xT(k+1) = 1x (n +m+1) vector
(3) Measure y(k+1) , u(k+1)
(@) Update Bk+1) = Bk) + L+ [yGk+1)-2Tk+1) 0y
(5) Update P(k+1) = [ {1 - L(k+1) xT(k+1) )Pk
(6) Replace k by k+1 and Go To (1)

VI. Results
y(k) Calculation

Calculation of the true junction-case temperature, ATjc = y(k), in the
RLS routine must be done using the TTIC and a persistently excited
device input power sequence, u(k). The "Calculated Parameter”
TTIC shown in Fig. 6 was specifically chosen as a test case example
since the R-C parameters generating this curve are exactly known and
can be compared to "Identified” R-C parameters. A computer
program was written to calculate y(k) utilizing input data points (10
pts / decade) from the test case TTIC curve. The program calculates
ATjjc for a continuous u(k) input sequence using the superposition of
equivalent heating and cooling pulses.

8 ©
o o

o L T H
7
= 8 °
g o =+ -
[S) — ATjc
S
M 2o =
I I _
~ 0
SIS
T 2id g
< e u(k) 4
0.Q0 1.00 2.00 3.00 4.00 5.00
Time [ms]

Fig. 8 Simulated Analog ATjc Response to u(k) Power Sequence

Fig. 8 shows a typical u(k) input power sequence and output ATjc
response for a 4th order ACSL analog simulation model using the R-
C Calculated Parameters in Table 1. The basic u(k) pulse pattern
from t = 0 to £ = 2.5 ms was repeated starting at ¢ = 2.5 ms. Of
particular interest is the instantaneous temperature jump at each new
u(k) pulse due to the P*R1 component of Fig. lc.

°
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T T T '

— Analo
O e g
< 6 .
L0
=
g 8| TTIC Calculated |

g . .

“Foo 1.00 2.00 3.00 1.00 .00

Time [ms]

Fig. 9 TTIC Calculated & Anatog ATjc Responses to u(k)

Fig. 9 shows the program TTIC Calculated ATjc discrete step

response as well as the analog ATjc response of Fig. 8. The TTIC
inherently incorporates the heating / cooling "integration step” while
providing "sampled” results at the end of each pulse. The discrete
TTIC and analog Simulated ATjc responses are virtually identical at
the end of each pulse from 1 =0 to £ =2.5 ms. At time ¢ = 2.5 ms, the
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Table 2 Summary of RLS Identification Runs

ID Initial Parameters

Identified Parameters

Run b Tcale R4 4
R ms) mey| Kl €1 R 2B G

RS| RI CI R2Z C2 R3 C3 R4 C4 RS

1a 001 032 [0.0000 0.0000 0.0000 0.0000 0.0000 -—--
F

a|lb 001 032
s

t{2a 1O 16 | 0.0064 0.0329 0.1095 0.0727 -0.015
26 1.0 16
3 10 80 e

4 100 400 - 0.2397

...... 00064 0.0324] 0.0179 0.0005 0.0762  ---- e o e
--——|[0.0064 0.0329 0.1095] 0.0727 -0.015

— |[0.0064 0.0329 0.108F;0.1697 0.1095] wmorr e —om o

0.0080 03600 0.0220 0.4880 0.0780 - - o

0.0064 0.0329 0.1095 0.0727 -0.015 —---  ~—ms  seeem
--m- 02397 0.6650 0.2910 0.9000 0.011f ------

1.2263 0.2910 0.9000 0.011

[0.0064 0:0330 0.1109 0.1479 0.1219]

——- 102397 1.2263 ] 0.0003 -0.117 0.1804

—— I 02396 1.1799 0.1659 9.4842 0.0110

I

True Value| -——

--——] 0.0064 0.0330 0.111

01480 0.1220 1.1800 0.1660 9.5000 0.0110

2
o
1,00

o
S 8
S -

o
T v =2

o T T T T ) T T T T T
Run 2b k=1 ms w/o O(h) o03) h =100 ms h =100 ms

«| Actual Semiconductor g ] 2 & s8] 6 ]
=T SN I ETS 1 T8
g Run2a h=1ms & OY) & _|E 05 e
& 1 8&53 y 1 8 H&§ 1
~ o1 L. = < S &
J Runlb h=10us & a-prioii | » |2 & k& 1.8 J

il =

- ~a M =3 o 2 M o
> & — x5/—El 4 8 HIE ]
5° Run la h=10uswjoa-priori | <X 1@ y =
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Fig. 10 Reconstructed vs. Actual TTIC's

TTIC program was restarted, retaining the ATjc (2.5ms) value as a
new starting point, and assuming the next pulse from ¢ = 2.5 to 3.5
ms is of 1 ms duration. The resulting error that follows between the
two ATjc responses illustrates a typical misapplication of the TTIC
concept that violates the single pulse - zero initial condition
assumptions upon which the curve is based. This is further clarified
by calculating both analog and TTIC program ATjc responses at?=
2.5ms and r=3.5 ms.

The TTIC ATjc response is calculated for a single equivalent heating
pulse of 2.5 ms duration and an amplitude (165 watts) corresponding
to the average value of u(k) from ¢ =0 to r = 2.5 ms. The resulting
temperature using the "Calculated Parameter” curve of Fig. 6 is 10.6
°C and is in agreement with the actual 11.1°C value obtained with
both the TTIC program and analog simulation.

The calculated TTIC ATjc response at 3.5 ms cannot be done by
restarting at £ = 2.5 ms as described above. The correct method must
assume the device power profile of Fig. 4a with PI=165 W, P2 =

360 W, t1 = 2.5 ms, and 2 =3.5 ms. Using the TTIC of Figure 6
and Eq(3) results in less than 0.5°C error from the true temperature.

True RLS y(k) calculation for the test case example with known R-C
parameters was done using Eq(19) discrete difference equation since
it was easier to use and provided discrete temperature information
identical to the TTIC computer program.

Test Case Results

Table 2 results show that only 4 basic identification runs were needed
to identify the 9 unknown R-Cparameters. Correctly Identified
Parameters in Table 2 are enclosed in a solid box. The four basic time

constants listed in the 7 ca)c column are a direct result of the
Parameter Initialization Procedure using Eq(8e) thru (8i) and the
Actual TTIC of Fig. 6. A suitable sampling rate for each ID run was

derived from the 7 cqic column by applying Eq(28).

The R1,R2,R3,Cland C2 values were identified in 2 ID runs using
the Fast 2nd Order @5}0 model . Run 1a used the Soderstrom starting

Time [Seconds]
Fig. 11 y(k) and y(k) Response to u(k)

Time [Seconds]
Fig.12 Filter Coefficient Convergence for u(k)

conditions assuming no a-priori parameter information. As seen
from Table 2, R and C1 are properly identified, as expected, for & =
10 usec. Run 1b shows that additionally R2 can be correctly
identified by using all the a-priori Initial Parameter Estimates from
Table 1. Following the TDT procedure, the output Identified
Parameters from Run 1b were used as Initial Parameter estimates for
Run 2 using £ = 1:0 ms. Run 2a results show that the final R3 and
C2 values enclosed by the dashed box in Table 2 are within 20% of
the actual values. This error is due to the method of calculating true
y(k) using the linear difference equation rather than the TTIC
approach. This is caused by the DC gain discretization error
introduced by the O(h3) term in the by filter coefficient of Appendix
2. Run 2b removed this error term resulting in final Identified
Parameters within 0.1 % accuracy. Figure 10 shows a graphical
comparison of ID Runs la, 1b, 2a, and 2b by reconstructing the
TTIC from corresponding identified R-C parameters.

Components R3, R4, RS, C3 and C4 were identifed using the slow

@fc model in Runs 3 and 4. The Initial Parameter estimate for R3 in
Run 3 was determined by adding the R1,R2 and R3 values identified
from Run 2b. The remaining Initial Parameters were obtained from -

the Initialization Procedure and Table 1. The results from Run 3
show that, similiar to Run 1b, the R3-C3 parameters associated with
the faster time constant are correctly identified. Run 4 used these two
component values along with estimates for R4, RS and C4 from
Table 1 as input parameters. The final Identified Parameters were
within 0.2% of the actual values. Figures 11 and 12 show typical
identification waveforms for Run 4 with 4 = 100 ms.

Fig. 11 illustrates the output error equation, y (k) = y(k) -§(k),
being driven to zero in k = 7 samples. After time k = 7, the y(k) and

§(k) temperature response waveforms to the u(k) sequence are
identical. The u(k) power sequence consists of six similiar amplitude
pulses before changing at k= 7. Figure 12 depicts the.same u(k)
power sequence applied as inAFig.l 1. In addition, a typical RLS

convergence pattern for two 6 parameter values is shown. The
A A .
digital filter coefficients,f1=a; and 3= by, are shown dynamically

adapting to new values to satisfy the y (k) error equation and also
reach steady state at k = 7 samples. The steady state values of the five

identified é\i were used to further extract the model R-C parameters.
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VIII. Conclusion
This paper has identified a need for a device thermal model to
maximize simulation capability by solving both the electrical and
thermal network models simultaneously. A new approach to the
problem of determining device thermal model characteristics was
presented using System Identification concepts. Governing thermal
laws, device physical packaging construction, manufacturer's data
specification sheet and standard TTIC "graphical transfer function”
information were used as a-priori knowledge to determine the model
order and structure. The typical semiconductor model structure
inherently contains wide time scale separation of the thermal time
constants. This information was used to advantage in formulating a
new "systematic” thermal R-C Extraction procedure using RLS and
time decoupled theory. Time decoupled theory used multiple RLS
identification runs to estimate the major time constants in succession
from the fastest to the slowest. The identified R-C parameters from
each run are found from the digital filter coefficients of the estimated

"mathematical" transfer function éj\c. A test example using a
transistor module was used to verify the proposed technique.
Calculated R-C parameters obtained from physical dimensions were
also performed.

The proposed parameter identification concept may also be extended
to other thermal systems with inherent overload capability such as
transformers, rotating machines, etc. A TTIC curve can be generated
for a step input of equipment power using output temperature data or
possibly internal temperature states. However, a linearized model for
arange of input power will be obtained due to nonlinear convection
and radiation heat transfer. Time decoupled theory may possibly be
extended to rotor time constant identification in AC vector control.
Appendix A1  Governing Thermal Laws

A R-C parameter model of Fig. 1c and Fig. 5d is assumed for 50
Amp, 500 Volt , 300 Watt dual darlington isolated base transistor
module with base dimensions of 1.25 x 3.6 inches. The specified
Ojc(tss) = 0.41 [°C / W] and has the TTIC curve shown in Fig. 6.
Thermal resistance is directly analogous to Ohm's law for electrical
resistance. A 45 ° angle from the junction to the case was assumed
Ri =L,/ (K *Ae) (A1)

L; = thickness[inch] of material along heat flow path

K = material thermal conductivity from Table A2

Ae = cross section area [sq.in.] perpendicular to heat flow path
in calculating an effective heat spreader area{Ae]} for succeeding
layers with a much greater true cross sectional area {Ac}. Thermal
resistance(R;}is calculated to the midpoint of each major heat
capacity material where the capacitance {C;}is assumed a lumped
parameter. However, the silicon chip is an exception where it is
assumed that the top 1/2 of the the thickness{L;} is really the
distributed power source {P}. The ceramic insulator (26%) and

solder interfaces (34%) account for 50% of the specified &jc(tss).
The thermal capacitance is calculated using true material volume:

Ci=p*Cp *V
p =density of the material from Table A2
Cp = specific heat of the material from Table A2
V= true material volume (L, * Ac) [in3]

(A2)

Table Al Calculated Parameter Spreadsheet
T Ac Ac Lt | Rind| K Ct
Material | (mils) | (sq. inch) | (sq. inch) (C /W) (C]W)| (W-s/C)
=1/4_[0.008 | 0.008
Sillcon | 15 10.43x 043043 % 0431 o508 0.033
SnPb 5 1043x043(043x043| =t |0.087 | o111 \
1090 4% 0. RN
=t/2][ 0,016
Mo 20 [0.43x0.43(0.43 x 0.43 ~T3 0016 0.148
So-Pb 17 =t 0.097 | 0.122
7525 0.43x 0.43[0.43x 0.43 = .
= 0.0089
63 |06x06 |06x06 =2
Cu block| 0.6x0. 0.6 x 0.6 =172 [0.008 1.18
So-Pb _
o 4 | 06x06|06x06| =t |0012 \\
A1203 | 20 [06x06 | 06x06 | =t [0109 | \
Sn-Pb =t
So-mt 9 |06x06 |06x06 0.027
=1t/210.010 9.50
118 | 1.2x1.2 [0.75x0.75 )
Cubase =t/2] 0010 o010

Table A2 Material Properties Assumed

Material K[W/(°C-in)] pllb/cu.in] CP[W-S/lb-"C]
Silicon 2.134 0.083 303
280°C Solder (Sn10-Pb90) 0.914 - I
Molydemum 3.296 0.369 115
180°C Solder (Sn75-Pb25) 0914 - J—
Ceramic 0.510  -eeeee -
Copper 9.77 0.320 175

Appendix A2 Discrete Transfer Function Model
Let the following constants be defined for a chosen sample time A:
Knn=h/RiC1 K21=h/R2C1 K2n=h/R:Cy K3p=h/R3Cy
(1-K11) K21 (1- 0.5 ¥ K91)
:( K22 (1-K22-K32) ) r=(ricry (Vo5 k35
c= |1 0] D =[R]
The digital filter coefficients used in Eq(18) transfer function are:
a; =-20+ K7 +K2+ K3
ay 1.0- K21 -K22-K32+ K21 * K32 ; bo =R
b1 =Ri{-20+K11 +K21 +K2+ K32- 0.5 *K11 *K21 }
by =R1{ 1.0 -Ky1-K21 -K22- K32 + 0.5 *K11 *K21 + .
K11 «Kp +K11+K3 + K21+ K33 - O(R3) }
where the O(h3) = 2nd order error term = 0.5 * K11*K21 *K3,
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