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Abstract

This paper presents a family of techniques called Adap-
tive Covering Algorithms, which solve a particular cov-
ering problem - how to best cover a target shape us-
ing a set of simply parameterized elements. The algo-
rithms, inspired by adaptive filtering techniques, pro-
vide a computationally simple, robust, and efficient al-
ternative to more traditional methods such as Bayesian
approaches, convex hulls, and multi-layer perceptrons.
The paper develops a theoretical understanding of the
adaptive covering algorithms by relating their behavior
to the evolution of a deterministic ordinary differential
equation. Stability and instability of the ODE can be
interpreted in terms of local stability /instability of the
algorithm. In terms of the covering problem, candi-
date coverings tend to improve as more data is gath-
ered whenever the ODE is stable. Several examples are
given which demonstrate the ideas, and which verify
that the analysis accurately predicts the true behavior
of the algorithms.

1 Introduction

Many problems in image analysis, data compression,
automatic classification, and pattern recognition can
be stated succinctly in terms of the covering problem:

Given a set of parameterized shapes (such as rectan-
gles, ellipses, polygons, half planes), how can a target
region (or family of target regions) be best covered by
these shapes?

Of primary interest are algorithms which automat-
ically learn the target region. Algorithms which are
easily implemented, computationally efficient, and ro-
bust to noise and misclassification errors are preferred.
This paper presents a family of such algorithms, whose
first members were introduced in [8], which are vari-
ants of known adaptive filtering methods [7]. We call
this family of techniques, adaptive covering algorithms
(ACAs).

A parameter (or weight) vector Wi € R” is used to
concisely describe the best current guess at time k of

the target region. An iterative method of the form
Wit1 = Wi + p {correction term} (1)

is employed to improve this guess, where the correction
term is some simple function of the data available at
time k, and p is a stepsize that determines the impact of
the new data on the current estimate. A good choice of
the correction term form will cause the parameter vec-
tor sequence {W;} to improve with time on average.
In certain cases, an analytical technique in the spirit of
[1, 2, 5, 6] can be used to provide concrete information
about the behavior of the algorithm. This technique
relates the stochastic behavior of the algorithm to the
behavior of a deterministic ordinary differential equa-
tion (ODE). When the ODE is stable, the algorithm
will tend to converge to a region about its minimum,
and this convergence can be characterized in terms of
a steady state error distribution. When the ODE is
unstable, the algorithm is unstable.

2 Candidate Algorithm Gener-
ation

We apply gradient descent notions to the covering
problem. For any set A € R, let I(-) : ®¢ — {0,1}
denote the indicator function of the set A. Suppose
there are n parameterized “shape” or kernel functions
K ;(): R4 - R! i=1,...,n where a! € R™ is the

ith parameter vector al = (a'i,a‘é, ... ,a:'n). A typical
example (for d = 2) is Ka(-) = IRr(s,q)(-) where R(s, d)
is the interior of a rectangle with center s = (s, s2) and
side lengths d = (d1, d3). Let X denote a d-dimensional
random variable distributed over a region that includes
the target area. Usually X is taken to be uniform. This
random variable may be thought of as the “sampling”
random variable. Consider an Ls or mean squared er-
ror type objective function:

J(al,a2, ... am) = E{|Ir(X) - S KGO ()
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One can see that if for example Ka(-) = Ir(s,q)(-), the
argument of the expectation is 0 at a point z € T if
and only if a single box covers that point. In general,
the argument is (k — 1)? if k boxes are covering. Thus
there is an impetus to cover, but also a counterbal-
ancing tendency to “spread out” over the target area.
Similar arguments usually hold for other choices of ker-
nel function.

Using the cost function (2), the gradient descent
method leads to the algorithm

(ai+1,a§+1,...,nlﬁ+1) = (ai,aﬁ,...,alﬁ) —-;LV()((?’))
where V(z) = vlIr(z) — Yiey Kai(£)|2 and the
gradient is taken with respect to the parameters
(al,az, o.,al).

In some cases, as when Ka(-) = In(,,q)(-), the differ-
entiation operation needed in the definition of V(') is
impossible. Even though V{(-) does not exist in func-
tional form, J(-) might still be differentiable. In this
case, one possible approach is to numerically differenti-
ate J(-), and use the resulting calculation in (3). This
is reminiscent of the Kieffer-Wolfowitz [4] algorithm of
stochastic approximations. The numerical differenti-
ation sometimes causes problems of its own, usually
pertaining to poor noise immunity and resulting slow
convergence rates. We investigate such an algorithm in
(3]

Another alternative is to make sure that the kernel
functions are differentiable. One possibility is to choose
a kernel function Kg with “smooth” edges. For exam-
ple, we might choose a = (s, d) and

Ka(z) = exp(~[z - ] D[z — 5]) (4)

where D is the diagonal matrix whose nonzero entries
are the d vector. V(-) is differentiable and (3) can be
implemented directly. We investigate this algorithm in
(3l

The Gaussian kernel of (4) is, of course, only one of
many sensible choices. Butterworth approximations to
boxes, and other kernels from filtering theory quickly
come to mind. We find that the convergence proper-
ties of the algorithms are heavily dependent upon the
nature of the kernel functions (as well as target shape).
The design of a good algorithm for a particular appli-
cation must take into account all of these factors.

Another way to create more candidate algorithms
is to change the functional form of J(-). Instead of
the L2 error, E{|Ir(X) — Y1y Kai(X)P}, one might
use the L' error, E{|I7(X) — >, K ;(X)}. The
former leads to algorithms which might be thought of
as analogs of LMS, while the latter lead to “signed”
style updates.

Given this large body of potential algorithms, how
can an intelligent choice be made? The next section
presents a methodology that has been successful in an-
alyzing and comparing various adaptive filtering algo-
rithms. We then give examples of this methodology
applied to the specifics of the covering problem.

3 Local Stability and Weak
Convergence Analysis

Consider an ACA as a discrete time iteration process
Wiyt = Wi + pG(Wi, Ye, U1, 1) (5)

where Wy is the parameter vector of weights that de-
fine the primitive shapes, u is the stepsize, Up41 =
q(W, Yi, ¥x), {¥x} i.i.d. is an input vector that usu-
ally just consists of the new sample point zx, and Y
represents errors in the samples z;, in the evaluation of
Ir(z:), computation errors, or other disturbances. The
function G(., -, -, -) represents the update term of the al-
gorithm, and is in general discontinuous for ACAs. In
implementation, one typically considers both the sam-
ple point z; and its indicator I7(z:) to be inputs. It is
more convenient analytically to suppose that only zj
is input, and that G then calculates I7(z;). A related,
but somewhat simpler model than (5) (without the de-
pendence of G on ) is considered extensively in [2] and
in the book by Beneveniste et al [1]. Kushner [5] stud-
ies p-dependent algorithms but uses different methods.
Our theorems are different from theirs, following the
techniques and methods of [2].

We relate the behavior of the algorithm (5) for small
4 to the behavior of the associated deterministic ordi-
nary differential equation (ODE)

W(t) = Wo + /0 G(W(s))ds (6)

where G(-) is a smoothed version of G(-,-,,").
Suppose that (W, Yk, Ur) is adapted to the filtration
{F1}, and define

G(We, Yi, p) = E[G(Wi, Yi, U1, 1)1 Fi]

to be a version of G that is smoothed by the distribu-
tion of the inputs Ug41. This smoothed version is often
differentiable even if G itself is discontinuous. A time
scaled version of W is defined as

Wu(t) = Wiy, t€ [0, 00)

where [z] means the integer part of 2.
Consider the following technical assumptions:
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A1) {G(Wy, Yk, ) : k € 2%, p > 0} is uniformly inte-
grable.

A2)

[t/ u]
12 E[(G(Wr, Ye, Uk1, 1) — G(Wi, Y, )] — 0.
k=1

A3) Wy = W,(0) — wo € B¢ in probability.

A4) {Yi} is a stationary ergodic sequence of E valued
random variables.

A5) G(w,y, p) converges uniformly on R x E to a con-
tinuous function G(w, ).

Theorem 1 : Under A1-A5, {W,} is relatively com-
pact and every possible limil point is a random process
in C[0,00). Furthermore, every limit point of {W,}
satisfies (6).

Proofs of all theorems are presented in [3].

The theorem asserts that the ACAs (5) will behave
like the ODE (6) for small enough g. If the solution
to the ODE is unique, then the sequence actually con-
verges in probability (not just has a weakly convergent
subsequence). Convergence in probability means that
for every T > 0, € > 0, limy_.o P(supgcs<7 |[Wu(t) —
W(t)| > €) = 0. This is useful because the ODE can
often be analyzed in a straightforward manner, other-
wise it can be numerically integrated. The advantage
of calculating the ODE over directly simulating the al-
gorithm is that the behavior of the algorithm can vary
widely in the short term depending on the vagaries of
the disturbances, the sampling methods used, the in-
put, the target area, etc., while the ODE is fully deter-
ministic.

One case of particular interest is where G has no
dependence on a {Y;} process. The following corollary
asserts the results of the theorem still hold but under
a milder condition.

Corollary 1 Suppose the algorithm form is
Wiyt = Wi + pG(We, Uk 41, 1)

where {Fi}, G and W, are defined as before. Assume
Al (or A1), A2, and A3. Replace A5 with

A§) G(w,pn) converges to G(w) a continuous func-
tion for all w € A. Furthermore, suppose that
SUPy e 4 G(w,p) < B < oo. Then the conclusions of
the previous theorem hold.

A2 is frequently an onerous condition to check. It de-
pends on the {W;} values themselves which we are

trying to obtain information about in the first place.
Therefore we may wish to replace A2 with the follow-
ing condition A6 and obtain the final corollary.

AB) Elsupyeq 1G(w, Y, Ug41,#)]] < oo and
E[SupweA IG('&U, Yk»l‘)” < 00.

Corollary 2 Suppose Al, A3, A5, A6. Then every
limit point of {W,} satisfies (6).

4 Examples and Applications

This section applies the theory of the previous section
to investigate the behavior of several ACAs. The first
example is a simple one dimensional y-dependent al-
gorithm. Its simplicity allows a complete closed form
analysis to be done. We then analyze the performance
of a more complex (and more useful) ACA.

Stable ODE’s correspond to well behaved algorithms
while unstable ODE’s correspond to algorithms which
will fail. In a practical sense, stability implies that the
algorithms will be robust to noise, misclassification er-
ror, and (most importantly) to target areas that do not
exactly match the shape of the primitive figures. For
instance, if the target area is a circle but the weights
are parameterized to represent a square, then the fig-
ure can not exactly cover the target. Stability of the
ODE suggests that the square will center itself on the
circle and adjust its side length so as to tradeoff the
target area uncovered with the nontarget area covered.
This is, indeed, the observed behavior of the successful
algorithms.

In 3], we give more details of the analyzes and con-
sider three other examples.

4.1 A One Dimensional Example

In order to introduce the techniques, we first present
the analysis of a very simple “u-dependent” algo-
rithm. This example considers a unit line segment
[w — 1/2,w + 1/2] seeking to automatically identify
the target region [—1/2,1/2]. The algorithm uses a
Kiefer-Wolfowitz style update which numerically ap-
proximates the derivative of the cost function (2). The
input to the algorithm consists only of the sample
points {X}. The algorithm (3) becomes

Wisr = Wi+ yp[lr(Xe)—1]
x [Kwy+y5(Xk) — Kw, - m(Xe)l/ VB
where K,(-) = I;—1/2,:41/2j() is the indicator of the

segment [z — 1/2,z + 1/2]. Defining Ugy1 = Xy, we
may rewrite the above as

Wit = Wi+ vpullr(Uks1) — 1]
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x [Kwy+v/a(Uks1) — Kwy - ym(Urs 1)1/ VB
= Wi+ pG(Wi, Uy, 1)

This is in the form of (1) of the corollary where v > 0
is some fixed parameter, Ux+1 = ¥ + W} and the {¥x}
are ii.d. uniformly distributed [~1/2,1/2] random
variables. One can show that the solution to the limit-
ing ODE is W (t) = wo — 7tsgn(wp) 0 <t < |wal/7v.

If wo is positive, then W(t) decreases at a rate 7
until it hits zero, while if wg is positive, W(t) increases
until it gets to zero. Thus the ODE converges to the
true answer, the theorem ensures that the algorithm’s
tendency is to follow the ODE and cover the target
area.

4.2 Signed Algorithm

The second example supposes that there are two
squares with fixed side lengths d' = (di, di) and
d* = (d2,d2), and centers s' = (s},s}) and 5% =
(s2,53), which try to identify a target rectangle with
side lengths d = (dy,d3) and center s = (s1,82). Let
{X} denote an i.i.d. sequence of uniformly distributed
random variables over the unit square [0, 1] x [0, 1]. At
each time step, Xi is the input to the algorithm. Let
I{(,j,dj)(') = Ip(ss,d)- We propose the following algo-
rithm:
At each time step k, for each box i,
(1) move towards the sample point if it is in the tar-
get area and is not in any box. (Ir(Xz) = 1 and
K(s5,45)(Xz) = 0 for every i)
(2) move away from the sample point if (a) the
sample is in the ith box but not in the target area
(Ip(Xx) = 0 and Ky 00y(Xe) = 1)
or if (b) the sample is in multiple boxes
(K(,-‘d.')(Xk) = I((,j,d,-)(Xk) =1for: # ])
In (8], the motion of the parameter estimates to-
wards or away from the sample point is always in the
+/—sgn(z —s*) direction, where sgn(-) of a vector indi-
cates an element by element operation. Note that step
2(b) provides the conflict resolution.

This logic can be stated succinetly. For the first box,
the update direction (at the kth time step) sgn(Xe—s')
is multiplied by

2(Xi) = —K(o1,a1)(Xi) =K (32,02 (X ) Ir (X )+ I (Xx)
(7)

while for the second box, the update in the direction
sgn(Xy — s?) is multiplied by

22(Xk) = —K(azydz)(xk)—K(_,x’dl)(xk)IT(Xk)—i—IT(Xk).

(8)
Letting Wi = (s, s3x, 2, s3)" (a four vector), the

full algorithm is then

Wit

(X, - 82X
e o (5500 )

= Wi+ uG(Wi, Ukt1) 9)

where Ug4+1 = X&.

We develop the ODE for this algorithm in (3] and
demonstrate through it and simulations that this ACA
is a reasonable choice. We then analyze an “unsigned”
version of this algorithm and demonstrate that it is
unstable.
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