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ABSTRACT

This paper presents a geometrical analysis of the equaliza-
tion problem. The input signal forms a (m+ L)-Dimensional
hypercube that is mapped via a convolution matrix to a m-
D parallelotope, where L is the order of the channel and
m is the order of the transversal equalizer. The properties
of this mapping are discussed, and a criterion for equaliza-
tion called the minimum width criterion is proposed. Vir-
tually all of the standard equalizer schemes can be viewed
as special cases of this minimum width criterion, including
the Lo, L1, MSE, LS, Sato, Godard, and kurtosis meth-
ods. It is possible to build “new” equalization algorithms
by combining the basic distance elements uncovered by this
geometric anaylsis.

1. INTRODUCTION

Equalization is used to reduce or cancel the ISI (InterSym-
bol Interference) caused by data communication channels.
Such channels are often modeled as FIR (Finite Impulse
Response) filter in which the term with the main (or refer-
ence) tap represents the desired signal, and the summation
of all other terms represents the ISI.

There are many different approaches to equalization
(surveys can be found in [t, 2]), which are derived as op-
timization problems with various criteria. This paper in-
terprets these criteria geometrically, and shows that most
of the equalization approaches can be derived from a single
geometrical criterion which we call the minimum width cri-
terion. Based on the geometric analysis, it is also possible
to derive new approaches that combine the strengths of the
various criteria.

2. PROBLEM DESCRIPTION

For simplicity and clarity, the input is assumed to be +1,
though the present analysis extends to any M-level PAM or
QAM signals. The equalizer is assumed to be a transversal
(linear FIR) filter, and the channel is modelled as the Lea

order system
L

Yk = otk + E itk 1)
i=1

A linear equalizer concatenated with the channel is cho-
sen to be an approximation to the inverse of the channel so
that the impulse response of the pair is close to a 6 function.
The transversal equalizer, which is assumed to be of fixed
length m, can be interpreted as a (m — 1)-Dimensional hy-
perplane passing through the origin in a m-D signal space.

If this hyperplane can separate the two groups of points
which represent the different input values ux_q4 = %1 for
at least one value of d (where d is some delay), then the
equalizer can “open the eye,” or remove the ISI sufficiently
to reconstruct the original signal. Suppose the m equalizer
taps are ¢i,i = 1,...,m. Then the recovered signal @tx—qa
is equal to E::_l gi¥k+i—1. Thus, for an L:n order channel
and its equalizer with length m, each recovered signal is a
function of m + L sequencial input signals. All these pos-
sible (m + L)-tuples compose a binary (m + L)-cube which
we call the “input cube.” The next two sections discuss
properties of the input cube and how it is mapped through
the channel.

3. THE BINARY N-CUBE (BNC) PROPERTIES

In order to recover the input signal, it is important to un-
derstand the structure of the input first.

BnC1: A binary n-cube has 2" vertices and each vertex can
be represented by an n-tuple (uy,u2,...,%n), where u; €
{-1,1},i = 1,2,...,n. More generally, it has a total of

on—k Z k-faces, where a k-face means a k-dimensional

boundary surface of the n-cube, £ = 0,1,...n. All k-faces
(except 0-faces) are either orthogonal or parallel each other.
BnC2: A k-face can be represented as an n-tuple with k
x’s and n — k u’s, where “x” represents a “don’t care” bit.
Thus, the number of x bits represents the dimension of the
face. The “don’t care” bits x contain information about the
orientation of the k-face, while the constant bits u contain

the position information of the k-face. Accordingly, there

are a total of (n T_‘ k) = (7’: ) different orientations of k-
faces in an n-cube. Along each orientation, there are 2”*
different positions that the k-faces can assume.
Comment:

Although the above properties are aimed at signals with
binary inputs, they can be easily extended to any M-level
n-cube. Observe that the convex cover, (which plays an
important role in the geometrical analysis of polytopes), of
an M-level n-cube is also a binary n-cube assuming that
the input is bounded.

4. THE DIMENSIONALLY DEGENERATE
MAPPING (DDM) PROPERTIES

This section describes how the input cube is mapped into
a m-D signal space through the channel (1). If we view
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the m equations of the channel (1) as a function, then its
domain is the multi-dimensional input (m + L)-cube, and
its range is the m-D signal space, where L is the order of the
channel and m is the length of the equalizer. This mapping
is dimensionally degenerate if L > 0 and it can be written
in matrix form as

Yr = Aug (2)

where y is the m-D vector composed of the received signal
sequence from yx t0 Ya4m~1,Ux is the (m + L)-vector com-
posed of the input sequence from ux—_1 to Uk4m—1, and A
is the convolution matrix. The DDM properties are sum-
marized as follows.

DDM1: All sub-dimensional faces of the input (m + L)-
cube with dimension ¥ < m are mapped into the m-D value
space without any dimensional degeneration. Orthogonal-
ity, however, is destroyed. Thus the original orthogonal
cubical k-faces in the input space become k-D parallelo-
topes in the m-D output space. All exterior subfaces of the
k-faces are mapped to exterior faces of the parallelotope.
DDMZ2: Since a m-D space can only accommodate a m-D
object, if k > m, the k-face of the input cube is mapped
onto a m-D parallelotope. The convex cover of the image
of the k-face is composed of the images of all its paral-
lel pairs of (m — 1)-faces which have different orientations
and maximum distance to the parallelotope’s geometrical

center. Thus, the parallelotope has a total of 2 (m’i l)

(m — 1)-faces. The effect of this dimensionally degenerate
mapping is that only some of the exterior faces are mapped
to exterior faces of the parallelotope.

- DDM3: The (m — 1)-faces of the image of the whole (m +
L)-D input cube with maximum distance to the origin of the
m-D signal space are orthogonal to the axis along which the
maximum distance occurs. This distance is the magnitude
of the minimum and maximum values of the received signal
¥k in (1). Thus, the supporting (m — 1)-D hyper planes of
these faces form a m-cube with a width of 2|y|maz , where
|ylmaz 1s the maximum magnitude of the received signal. In
another words, the whole image of the input (m + L)-cube,
which 1s a m-D parallelotope, is exactly held in a m-cube
with width 2|y|maz in the m-D signal space.

Fig. 1 shows an example of the 2-D image of a 4-D
input cube mapped through a second order nonminimum
phase channel.

5. THE (M —1)-D SEPARATING PLANE AND
THE MINIMUM WIDTH CRITERION

The properties of the input cube and its image after map-
ping through the L:» order channel (1) can be used to de-
scribe geometrically the properties of desirable equalizers.
Consider the images of the two input (m + L — 1)-faces de-
fined by ux—s = £1. By DDM2, the effect of the dimension-
ally degenerate mapping is to map the two (m+ L —1)-faces
of the input cube defined by ux_q4 = +1 and ux_a = —1
onto pairs of m-D parallelotopes with (m:; f ; 1) dif-

ferent widths.
The goal of a transversal equalizer is to find a (m—1)-D
hyper plane q7 Yx = 0 which passes through the origin and

separates these two m-D parallelotopes, where Yi represents
the m variables in the m-D signal space. The coefficients
of the equalizer q must be scaled so that the recovered sig-
nal dix—q = qTyx, where yy is the recieved signal regressor
vector. Clearly, the process of finding this separating plane
is dependent on the boundary (m — 1)-faces of the two par-
allelotopes. We thus may expect that the best equalization
will occur when the separating hyper plane is parallel to
the sides of the parallelotope having minimum width. Intu-
itively, the direction in which the image of ux4a = 1 (or —1)
looks the “thinnest,” will be the best direction for the sep-
arating hyper plane. We thus call this the minimum width
criterion.

It is computationally expensive to find the exterior (m —
1)-face pair of the image of ux—q = 1 (or —1) with the mini-
m+L-1

m—2
pairs of different (m — 1)-D faces. An easier way is to con-
sider the distance between each of the (m —1)-faces and the
separating hyper plane. Since only one of the (m — 1)-face
pairs maps to an exterior (m — 1)-face of the image of the
whole input cube, this suggests two different methods to
obtain the optimal separating plane.

mum width directly since it involves searching

5.1. THE MIN-MAX (L.) APPROACH

Consider the exterior (m —1)-faces of the image of ug—q = 1
(or —1). The minimum width criterion implies that the
maximum distance from all signal points to the separating
plane should be minimized. This gives the min-max dis-
tance criterion, which is also known as the Lo, criterion.
The distance from a point yx to a plane q passing through
the origin is equal to [qTyx|/|| ¢ |l . Thus, the min-max
distance is in the form of min(maz|qTyx|/ || ¢ ||2) which,
by normalizing ¢ to unity, can be rewritten as

la”yxl) 3)
st flgl=1

min (maz

Note the criterion (3) does not require knowledge of the
channel, nor of the input in order to determine the sepa-
rating hyperplane. Thus, it is an ideal criterion for blind
equalization. An alternative way to set the constraint (note
if there were no constraint, the solution would be trivial) is
to let one of the equalizer’s taps be fixed at 1, which gives
the modified min-max distance criterion

la”yx!) (4)
st gi=1

min (maz

where 7 is indexed from 1 to m.

This L criterion which comes directly from a geomet-
rical consideration of the problem is identical to the crite-
rion in [3] which was derived from a L, criterion using the
theory of [4].

Since yx = Aux , and maz|)_ ui| = mazy_ |ui| for all
possible ug, from the min-max distance criterion (3, 4), we
have

min(maz |qT Auxl) =
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min |lq" Al (5)

m
= min Z Jsil

t=—~L

where {s:} is the impulse response of the convolution of the
channel {a;} and the equalizer {¢:}. This turns the min-
max distance criterion into a L1 minimization problem. As
in the above analysis, a constraint must be added to avoid
a trivial solution. Fixing an equalizer tap at unity gives
the same solution as in (4), while setting the constraint to
3o = 1, where s, is the center tap of the system, gives the
peak distortion criterion as in [5].

Comments:

1. Both the L; and L criteria are equivalent. While
solving (5) requires knowledge of the channel, solving (3,
4) can be done blindly, i.e. without the knowledge of the
channel or the input. Both have to be solved by LP (Linear
Programming) whose solution is obtained by selecting and
solving a set of m independent equations from a large set
of equations.

2. In order to avoid LP, an iterative approximation L,
scheme was presented in [3] which could be applied to re-
cieved signals only. When p = 2, the Ly algorithm can
equalize minimum (or maximum) phase channels only [6].
The L, solution is symmetric when the reference tap is set
at the center. This implies that the L, algorithm is bound
to fail to open the eye on strongly nonminimum phase chan-
nels.

3. The maximum kurtosis criterion presented in [7] results
in a Ly algorithm under certain conditions. Similar argu-
ments to these for the L, algorithm show that the algo-
rithm cannot equalize nonminimum phase systems unless
the channel is well behaved or a pre-whitening filter is ap-
plied to the recieved signal.

5.2. THE MAX-MIN APPROACH

The previous section shows that the minimum width crite-
rion leads to a min-max distance criterion by considering
the outside exterior (m — 1)-face of the image of ux—q4 =1
only. On the other hand, considering the (m —1)-face which
is not an exterior face of the image of the input cube, (and if
the eye is open at the choice of delay d), then the minimum
width criterion also implies that the minimum distance from
all the points to the separating plane should be maximized.
This imples that the separating plane is parallel to one of
the inside (m — 1)-faces. Similar arguments lead to the
max-min distance criterion:

maz (min|q"yk|/|lgll2)

which is equivalent to

la”y«l) (6)
st flalla=1

maz (min

This can also be rewritten in terms of the inputs as

la” Ausl) (M
8.t. ||q||2 =1

maz (min

The constraint on the equalizer taps q can also be chosen
to be a single fixed tap constraint as in (4). Note that (6) is
related to the recieved signals only, so it can also be used for
blind equalization. Since this distance (6) is closest to the
separating plane, if it is maximized, its solution will often
have a better bit error rate than those of min-max distance
solutions. Such examples are not difficult to find.
Comments:

1. The max-min distance criterion and the min-max dis-
tance criterion can be considered a dual pair, and their so-
lutions are not, in general, the same. The reason for this is
the discreteness of the FIR model. However, as the equal-
izer length m increases, the two solutions converge, that
is, the two sides of the (m — 1)-faces approach the pair of
parallel exterior (m — 1)-faces with minimum width.

2. The maximum kurtosis criterion in [7] can also be geo-
metrically interpreted as a max-min criterion by removing
the restriction on the average power constraint. In this case,
if the kurtosis of the input is less than zero (and the input
is real), the criterion can be rewritten as

maz K(z) = 2B (|} + | B{z:)?" ~ E{l=il*)
2E{|al}? - Bl - B{|=*))
st igllz=1
where |z;] = |qTyx| is the distance from a signal point to

the separating plane under the constraint. In the second
equation, the first term is a measure of the summation of
the distance from the geometric centers of the images of
ux—q4 = *1 to the separating plane. The second term is a
measure of the differences of the distance from the two sides
of the image to the geometric center, where all distances
are averaged through the expectation operator. Thus, the
kurtosis criterion results in a measure of distance from the
two inside (m — 1)-faces of the image of ux—4 = %1, which
is then maximized.

5.3. THE MEAN SQUARED ERROR (MSE)
APPROACH

An alternative way to view the minimum width criterion
is to consider the separating plane in the input domain.
Let %x—a = O be the separating plane in the (m + L)-D
input space contained inside the input cube. By the DDM
properties and the linearity, this bounded separating plane
is mapped onto a parallelotope centered at the origin that
lies between the images of ux.q4 = x1. Thus, if the two
images of ux—q = %1 are separable, then the best equalizer
can be obtained by letting the image of the separating plane
ux—g = 0 in the input cube degenerate to a (m —1)-D plane
along its minimum width direction. This results in the MSE
approach to blind equalization.

The images of ux—_g = 1,—1 and 0 are shifted versions
of each other. Applying a plane fitting scheme to all the
points of the image of ux—_q4 = 1 (or —1) only, results in a
plane which has the same normal direction as the separating
plane that passes through the geometric center of the image
of uk—a = 1 (or —1). One representation of an arbitrary
plane is

1Ty + 2224 ...+ CpZp =1 (8)
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Thus, the separating plane can be obtained by solving the
system of equations

q"yi =1 9
for all recieved signal regressors yx corresponding to ux—q =
1 (or -1).

The system of equations (9) can be solved iteratively or
in block form by minimizing the cost function Z(qTYk -
1) for all yx. Thus the minimum width criterion leads
to the MSE solution for the separating plane which, under
reasonable conditions on the input signal, is unique up to
multiplication by an unknown gain. This gain is easy to
deal with as mentioned in [6].

Observe that in (9), only half of the yx are used. Mod-
ifying (9) to

A la"ysl =1 (10)
allows the use of all the recieved data, and the cost function
becomes Z(Iqrynl —1)3, which is exactly the cost function
of Sato’s algorithm [8] for binary inputs.

Comments:

1. Sato’s algorithm performs a gradient descent using the
cost function (10). This may also be solved in block (Least
Squares) form, and this LS solution will be the same (up to
an unknown gain) as the well known LS solution of A7q =
1a, which requires that the channel be known, where 14 is
the zero vector except for a 1 at the d.» position, and A is
the convolution matrix.

2. The plane fitting of the MSE approach leads to a sep-
arating plane that is in general not parallel to any of the
(m — 1)-faces of the m-D parallelotope. This results in the
performance difference between the MSE solution and the
min-max and max-min solutions. It is not easy to chose
among the various criteria since the system performance is
dependent on details of the channel, the equalizer length
and the distributions of the inputs and disturbances.

3. Godard’s algorithm [9] is a variant of (10) in which the
{qTyx| term is raised to the p power. This does not funda-
mentally change the geometric meaning of the cost criterion.

6. CONCLUSION

All the main existing linear transversal equalization schemes
can be viewed as special cases of the minimum width cri-
terion of this geometric analysis. Since we have succesfully
interpreted the kurtosis criterion (which is a 4. order cu-
mulant method) we expect that other high order cumulant
algorithms can also be interpreted in the same framework,
though this investigation is underway. The minimization
criteria have used four basic distance measures: the dis-
tance from the outside exterior of the images ux—q = *1
to the separating plane, the distance from the inside exte-
rior of the images ux—a = %1 to the separating plane, the
distance from the geometric center of the image to the sep-
arating plane, and the width of the image of the separated
parallelotope. These four distances are not independent.
Using these distance measures as building blocks may lead
to numerous “new” criteria and algorithms for equaliza-
tion. Our goal is to explore this space of algorithms with
an eye toward designing optimal algorithms for particular
environments. The geometric analysis gives a way to view
the universe of possible equalization algorithms from a sin-
gle vantage point.
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Fig. 1 The image of the 4-D input cube mapped through
the second order nonminimum phase channel yx = u; —
3.5ux—1 + 1.5ux—2. p1 and p; are the Lo and MSE solu-
tions respectively for iix—, while ps and ps are the Lo, and
MSE solutions for @ix—2.
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