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Abstract

A recursive equation which subsumes several com-
mon adaptive filtering algorithms is analyzed for gen-
eral stochastic inputs and disturbances by relating the
motion of the parameter estimate errors to the behav-
ior of an unforced deterministic ordinary differential
equation (ODE). Local stability of the ODE implies
weak convergence of the algorithm while instability of
the differential equation implies nonconvergence of the
parameter estimates. The analysis does not require
continuity of the update equation, and the asymptotic
distribution of the parameter trajectories for all stable
cases (under some mild conditions) is shown to be an
Ornstein - Uhlenbeck process.

The ODE’s describing the motion of several common
adaptive filters are examined in some simple settings,
including the Least Mean Square (LMS) algorithm and
all three of its signed variants (the signed regressor,
the signed error, and the sign-sign algorithms). Sta-
bility and instability results are presented in terms of
the eigenvalues of a correlation-like matrix. This gen-
eralizes known results for LMS, signed regressor and
signed error LMS, and gives new stability criteria for
the sign-sign algorithm.

1. Introduction

As applications of adaptive filtering, communication,
control, and identification methods have grown so have
the number of adaptive algorithms. Some are proposed
because of their convergence properties, some because
of their numerical simplicity, and others because of
their noise rejection capabilities. The general recursive
form

Wig1 = Wi + pH(Wi, Y, Ur+1) (1)

captures most of these algorithms by suitable choice
of H(-). In (1), Wi represents the parameter estimate
errors, Yy is (usually) a vector of inputs, Uk is a distur-
bance process that represents all nonidealities such as
measurement and modeling errors, and 4 is a small pos-
itive constant stepsize. Convergence of the process Wi

to a stationary distribution about zero is equivalent to
convergence of the adaptive filter parameter estimates
to a region about their optimal values. Two important
questions concerning the behavior of W; arise imme-
diately: Under what conditions is the process stable?
When do there exist stationary distributions for Wy,
and how can these stationary distributions be charac-

terized?
Let us define a time scaled continuous time version

of (1) as
Wa(t) = Wig/ @

where [2] represents the integer part of z.

We address our questions by relating the behavior
of the scaled adaptive algorithm (2) for small  to the
behavior of the associated deterministic ordinary dif-
ferential equation (ODE)

W(t) = Wo + /0 " BW(s))ds 3)

where H(:) is a smoothed version of H(:,-,")-

The question of when time scaled versions of the W
process converge (as p — 0) to W (t) has been investi-
gated by a number of researchers both for fixed u and
for the time varying stepsize cases of stochastic ap-
proximation. Many of the original notions (done in the
stochastic approximations context) are due to Ljung
[3] though the present approach is probably closest in
spirit to [2]. Excellent overviews of this area are avail-
able in the books [1], [2]. Our arguments are somewhat
shorter than some of the more traditional pathways and
we are able to prove the almost sure convergence of the
algorithms, a stronger result for the fixed p algorithms.

If the ODE is locally stable, then the algorithm (1) is
locally stable (indicating probable success of the adap-
tive scheme), while if (3) is unstable, then (1) is also un-
stable, and the adaptive algorithm fails. For instance,
it is well known [4] that if the correlation matrix of
the input process E{XXT} is positive definite, then
(for small enough p) the parameter estimate errors of
the LMS algorithm converge in distribution to a region
about the origin. The same matrix E{XXT} appears
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in our analysis as the linearization of H(W). Posi-
tive definiteness of this matrix implies local stability of
the ODE, while a negative eigenvalue would imply lo-
cal instability. We investigate, and give local stability
conditions for the three signed variants of LMS. The
condition for the sign-sign algorithm is new.

The relation between the adaptive algorithm (1) and
the ODE (3) may be thought of as a type of “law of
large numbers.” To investigate how close the behav-
ior of the algorithm is to the deterministic trajectory
of the ODE, one desires a corresponding “central limit
theorem.” Consider the time scaled process Wy(t). In
section 2, the martingale central limit theorem is ex-
ploited to show that the error process

1
- ) — WA 4
\/l—‘(Wu( )-W()) (4)

converges to a forced ODE that is driven by a sum
of independent Brownian motions. Under some as-
sumptions on the input and disturbance processes, the
limit distribution is a Ornstein-Uhlenbeck process, with
known mean and variance.

In practical terms, this convergence has two major
implications. First, for a given algorithm, it is easy
to calculate the parameters of the convergent distribu-
tion in terms of the properties of the inputs and distur-
bances, and hence to give a measure of the performance
of the algorithm. Second, this allows a fair comparison
between competing adaptive schemes, which we per-
form for LMS and its signed variants.

V() =

2. Principal Theorems

The problem may be formulated as follows:
Assumption (C.1) {Y} is stationary , ergodic and there
is a sequence of i.i.d. E3-valued random variables {¥r},
independent of {Y:}, and a measurable function q:
R4 x E; x E3 — E, such that Uky1 = ¢(Wi, Ya, ¥r),
and W is independent of {(Yx, ¥x)}. Define P(Uis1 €
C|F) = P(g(Wi, Yz, i) € C|F) = U(Wk,Yk,C) and
assume that H is integrable with respect to n(w,y,-)
for each (w,y) € R4 x Ey. vy € P(E,) will denote the
distribution of Y;. Define

mmw=éﬂwwmmW%wy (5)

Assumption (C.2) H is continuous in (w,y) , and for
Kegt

E{SupwzlwlsKlH(w’Yk’q(w’y’h¢k))|} < o0 (6)

E{Supwzlwnglﬂ(w! Yk),} < 0. (7)

(E,r) denotes a metric space with associated Borel
field B(E). Let Dg[0,00) be the space of right con-
tinuous functions with left limits mapping from the in-
terval [0, c0) into E. We assume that Dg[0,c0) is en-
dowed with the Skorohod topology. Let {X,} (where
« ranges over some index set) be a family of stochas-
tic processes with sample paths in Dg[0,00) and let
{Pa} C P(DE[0, 00)) be the family of associated prob-
ability distributions (i.e. Po(B) = P{X, € B} for all
B € B(E)). We say that {X,} is relatively compact if
{P.} is relatively compact in the space of probability
measures P(Dg[0,00)) endowed with the topology of
weak convergence. The symbol = will always denote
weak convergence.

Theorem 2.1 Let W,(t) = Wiy, and for K € R,

K
define 7K = inf{t : [W,(t)] > K}, and We (1) =
Wu(- A ‘rf) define the “stopped” process. Assume
C.1,C.2, and that W, (0) — wy in probability as y — 0.

K

Then for each K, {Wa* ,u > 0} is relatively compact,
and every limit point (as p — 0) satisfies

W) = wo + /0 " B(W(s))ds 8)

fort <K =infl{t : (W(t)| > K}.

Alternatively, we may assume: Assumption (C.2a)
Define H(w,y,z) = H(w,y,q(w,y,2)). Let Q =
{(w,9,2) : H is continuous at (w,y, z)}. Assume that
J [ Iq(w,y, 2)vy (dy)vy(dz) = 1, for every w , and for
K et

E{supw:lwnglH(w)Yk)q(wxyh’d)k))l} <oo (9)
E{supyjui<x [H(w,Y2)|} < co. (10)

Corollary 2.1 Assume C.1,C.2a, W,(0) — wq ai-
most surely, and that the solution of (8) is unique.

K
Then {W;" } converges almost surely to W™ .

All proofs may be found in [5]. Consider the scaled
error process (4)

1
— - 1
‘/E(Wu(t) w(t)), (11)
where the scaling factor \/LF expands V, to compen-
sate for the time compression of W,(t). G(w,y,u) =
(H(w,y,w) ~ H(w,y))(H(w,y,u) — H(w,y))" is the
matrix that represents the deviation of H from its
smoothed version H. If H is square integrable with
respect to n(w, y, -) for each pair (w,y) € R x Ey, we
can define a smoothed version of G as

G(w,y):/E G(w,y, wn(w,y, du). (12)

Vu (t) =
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Averaging over all inputs yields

G(w) = / G(w, vy (dy)- (13)

In addition to C.1 and C.2, we make the further as-
sumptions:

Assumption (C.3) H is square integrable with respect
to n(w, y, -) for each pair (w, y) € R4 x Ey. H is differ-
entiable as a function of w, G and 8, H are continuous,
and for K € ®*

E{Squ:|w|5K|H(wyYk;’l(w5ylc»¢k))|2} < oo
E{Supw:{wlsKlG(u}’Yk)‘} < oo
E{supwzlwl_SKlawI_{(erk)l} <o

Define
. [t/u)-1 B
Mu(t)= Y (HWi,Ye,Ursr) = H(Wi,Ye))Ve
= (14)
and
t/u-1 A
Lut)= . (HW(kp),Ys) — HW(ku))Vi- (15)
k=0

There are a variety of different conditions (for example,
mixing conditions on {Yi}) that imply {L,} converges
weakly to a (time inhomogeneous) Brownian motion.
We simply assume this convergence. Thus the fourth
assumption, (C.4), is that L, = L.

Theorem 2.2 Assume C.1-C.4, that W,(0) — wo in
probability, that the solution of (8) exists for allt > 0,
and that V,(0) — vo in probability as p — 0. Then
M,, = M where M is ¢ mean zero Brownian motion
independent of L with

E{M)M®)T} = /0 G(W(s))ds

and V, = V satisfying

V() = vo+M(t)+L(t)+/ot 8w H(W (s))V (s)ds (16)

3. Examples

In the various examples, we impose some common
additional assumptions on the input and disturbance
processes. These are not required by the theory.
Rather, they are a way to find relatively simple expres-
sions for the stability/instability of the ODE, and for
the mean and variance of the corresponding Ornstein -
Uhlenbeck process. These assumptions are:

e E1 {U;} is a zero mean i.i.d. sequence with prob-
ability distribution 7(-) and bounded density fu(¥)
with f,(0) > 0. The sequence {X:} is a station-
ary, ergodic sequence (with finite mean and covari-
ance) of %4 valued random variables independent

of {Ui}.

o E2 Assumption (E1) holds and that the compo-
nents of X; = (X1, Xj2, .- .,de)T are 1.i.d. sym-
metric, mean zero, variance o2 random variables
forallj€ 2.

Note that (E2) does not require independence of the
vectors X;. These, of course, are a very restrictive set
of assumptions. However they will allow us to com-
pare in a common setting the local stability/limiting
distribution behavior of the four algorithms.

3.1 Sign-Sign Algorithm

The sign - sign algorithm, prized for its computa-
tional simplicity, has seen a resurgence of interest since
its incorporation in a recent CCIT standard for adap-
tive differential pulse code modulation. Despite some
efforts, a clear and simple test for stability of the algo-
rithm has been elusive. The algorithm is

Wisr = Wi — psgn(Xx)sgn(Xif Wi +Ux)  (17)

where Wi is the parameter estimate error, X} is a re-
gressor of past inputs, sgn(X) applied to a vector is an
element by element operation, and U is a disturbance
term.

Suppose that the {Uy} sequence satisfies (E1). De-
fine y = (z,sgn(x)) or Yx = (X&,sgn(X)). Then

—H(w,y) = sgn(z)(1 — 27(~z" w))

is continuous in (w,y). Thus, conditions C.1 and C.2
(and hence Theorem 2.1) hold.

Let F(-) denote the distribution function of Xj.
Then

— A(w) = / sgn(2)[1 — 2n(~2Tw)ldF ().  (18)

Since f, is bounded, we can show H is globally Lip-
shitz. Hence there exists a unique solution to the ODE
which doesn’t become unbounded in finite time. There-
fore we do not need to work with the “stopped” pro-
cesses. We linearize H about zero to obtain

0 -
3510 = 2£,(0)E{sgn(X1) X1 }-
For the “central limit theorem” results, note that

G(w, y) = sgn(z)sgn(zT)(1 — (1 = 2n(-w"2))*) (19)
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Assume (E2) holds, then E{sgn(X;X{)} = I. Hence
G(w) = I - E{sgn(X1 X{)(1 — 20(~X{ w))’} (20)

or G(0)=(1-(1-29(0))I=1.

Recall that the Brownian driving term L(t) is the
limit of L,(t) of (15). At the equilibrium w = 0,
H(0,Y:) = —sgn(Xi)(1 — 29(0)) = 0. Similarly
H(0) = 0 for symmetric noise, which implies that
L,(t)=L(t)=0

Hence, the limiting stochastic differential equation
is:

V() = vo + M(t) — 2£u(0) E{sgn(X1)X] } /o 1 V(s)ds.
(21)

Under assumption (E2), the V() process “de-
couples” into n independent components V(¢) =

(Va(2), Va(t), ..., Va(t))T where

Vi(t) = voi -+ M(t) — 2fu (0) E{ Xrssgn(X1:)} /o Vi(s)ds.

This is the general form of an Ornstein-Uhlenbeck ran-
dom process. Define a = 2f£,(0)E{X;sgn(X;)} and
02 = 1. Then Vi(t) is an asymptotically stationary
Gaussian random process with mean zero, variance
% and autocorrelation function R,(r) = E{V;(t +
Vi) = 2 exp(~alr]).

Practically speaking, this means that for small u we
have the approximation V,(t) = Z=(W,(t) - W(t)) ~
V(t), where V(t) has a N(0, %) density, and W(t) ~
0. Hence Wy(t) = Wy, has (approximately) a

2 .
N(O, [J;—a) = N(O, Wm) denSlty.

3.2 Signed Error Algorithm

The signed error algorithm is similar to (17) but with
the sgn function applied only to the error term

Wit1 = Wi — pXisgn(XT Wi + Us). (22)

Emulating the above derivation (with y =z or Y} =
Xi), one obtains —8/0wH(0) = 2f,(0)02I. Also
a = 2f,(0)0? and 0% = o2. Hence, as before we
have, Ry(r) = E{Vi(t + r)Vi(t)} = % exp(—alr|) and
Wu(t) = Wy, has (approximately) a N(O,u;’—:) =
N(0, Uf‘ﬁj) density.

3.3 Signed Regressor Algorithm

Applying the sgn function to only the regressor vec-
tor X; yields

Wi1 = Wi — psgn( X )(XT Wi + Us). (23)

With y = (z,sgn(z) or Yi = (Xi,sgn(X)), we
may show —8/0wH(0) = E{sgn(X1)X7}. Also
o = E{sgn(X1;)X1:} and 02 = o2. Then Ry(r) =
%;exp(—al‘fl), and Wy, has (approximately) a

o3 .
N(O,#g—:) = N(0, mx—l’;—glm) density.

3.4 LMS Algorithm

Probably the most studied adaptive algorithm is the
Least Mean Square algorithm [4]

W1 = Wi — pXe(XE Wi + Ur) (24)

In this case —8/0wH(0) = —o2I. Also & = o2,
02 = 0202, Then R,(7) = 2 exp(—alr|) and Wy
has (approximately) a N(0,pu%) = N(0, %) for its
stationary density.

4. Conclusion

The ODE results of [1] - [3] have been generalized
to an almost sure result, even for the fixed stepsize
algorithms. The theorems have then been applied to
four popular adaptive filtering algorithms, leading to
conditions for local stability (and in some cases, local
instability) of the recursive algorithms.
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