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ABSTRACT: Blind equalization of systems which contain a nonminimum phase component is & notoriously difficult task. Minimizing the energy
(12 minimization) of the equalizer output (under a fixed tap constraint) cannot be guaranteed to open the eye (to reliably unscramble the message)
because it tends to converge to an equalizer setting that contains a reflection of the unstable zeros inside the unit circle {1}. We show that in at least
one simple setup involving a mixture of minimum and nonminimum phase elements, an {00 minimization of the equalizer output is the appropriate
criterion which should be minimized in order to successfully open the eye. Utilizing a finite impulse response equalizer which is constrained to have
a unity coefficient on the center tap, we show that, for large enough dimension (depending on the closeness of the zeros of the channel to the unit
circle) the eye will be opened. Unfortunately, there is no simple (gradient) scheme to exactly implement the loo minimization, and we propose using
a gradient Ip scheme, for p large. We show that there is generically a unique global equilibrium to which the scheme converges under weak excitation
conditions on the input data. This result is in sharp contrast to competing schemes such as the Sato algorithm [2], the Godard algorithms [3] and
the Constant Modulus Algorithms [4, 5] which are all susceptible to undesirable local equilibria [6].

1 Introduction

Communication channels invariably distort the data that they carry.
The goal of channel equalization is to undo the effects of the distortion
by building an equalizer that can be thought of as an inverse to the
channel, This task is more difficult than standard system identification
because the input is unavailable for use in the construction of the inverse,
though it is made easier due to the nature of the data sent, which can
often be modelled as a binary (or slightly more complex, as a M-ary or
QAM) signal.

Figure 1 shows the basic setup of the channel and equalizer. Suppose
that the input uy consists of a binary signal that takes on the values £1,
that the chanuel is represented by a (possibly nonminimum phase) finite
impulse response (FIR) filter ¢, and that the task of the FIR equalizer
¢ is to make the reconstructed signal §; equal to the input, though
possibly delayed in time. This goal is often refered to as “opening the
eye (diagram)" of the channel, and may be stated as a requirement that
the impulse response of

T=¢*E (1.1)

(the convolution of ¢ and £) contains a single tap that dominates all the
vest. Several remarks are in order regarding this choice of problem setup
in which our goal is to highlight the features unique to nonminimum
phase equalization. The channel is assumed FIR because the presence
of minimum and nonminimum phase zeros is the most difficult part of
the blind equalization task. The input is assumed binary, though ex-
tensions to the more useful QAM setup appear to be viable (the PAM
generalization is immediate). The equalizer itself is chosen to be FIR
because of the stability problems inherent in identification of autoregres-
sive componcents (problems which are ded by the
phasc character of the channel).

inimum

Several algorithms have been proposed to carry out the identification
of appropriate equalizer parameters. These typically involve minimizing
the mean square energy of the equalizer output signal under a constraint
on the cqualizer parameters to avoid a degenerate solution, e.g, an off-
line procedure is described in [1], or of minimizing the deviation of the
equalizer output from a desired constant (modulus) value (2, 3, 4, 5]. In
contrast, this paper shows that these are inappropriate things to mini-
mize, and demonstrates that a more suitable criterion, in light of the goal
of "opening the cye”, is to minimize the leo norm of the equalizer output
§ (as opposed to the I norm) under a fixed center tap constraint (as op-
posed to fixing a leading tap). This theory was generated independently
to closely related work of Rupprecht [7, 8, 9]. Moreover, we propose a
simple recursive algorithim that suitably approximates the desired loo s0-
Iution, The las npproach generically has a unique global minimum which
tends to open the eye (provided that the equalizer contains enough taps
for an open eye solution to exist).
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Figure 1: Channel and Equalizer
2 Problem Formulation and Notation

Throughout this paper, we focus on the task of constructing an equalizer
for the FIR system (channel)

.(2.1)

Tk = ug + 1.y + P2uk—2

with transfer function (letting ¢o = 1, ¢1 = —~a—b, ¢2 = ab,and ¢; = 0
otherwise)
(1= az"1)(1 = b2"1) (2.2)

where one zero is assumed inside the unit circle and one outside, [5] >
1> Ja] > 0. (For values of a and b not satisfying this condition we have
either a minimum or maximum phase system for which successful blind
algorithms are known to exist, using simple energy criteria like that
described in [1].) Just as any AR filter can be approximated arbitrarily
closely by an appropriate (doubly infinite) FIR filter, so too can any
FIR filter with zeros not on the unit circle be approximated in (perhaps
doubly infinite) AR form. Corresponding to (2.1) and (2.2) is the inverse

of
z

b(--'+b_222 +b071 14027 42272 410

a-
which can be written
(2.3)

where

Note that the numerator factor in (2.3) is inconsequential to the identi-
fication problem in the telecommunication context because it does not
affect the relative eye opening. Further, observe that a purely minimum
phase channel would tend to have 2 = 0 for all positive i, while a purcly
maximum phase chanuel would tend to have E; = 0 for negative i, This
describes what an ideal equalizer would be, since with Z; = §; for all 4,
the convolution v = ¢ * £ contains a single non-zero coefficient. Thus
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an eqpal‘?ur -onstructed in this. fashion fully opens the eye. In practice,
the cf I must be ¢ d to a finite length, and the noncausality
cau.be handled by delaying the finite equalizer an appmprmte amount
[10}. Neverthcless, this provides a benchmark against which the success
can be d

or:failure of a candidate blind equalization sch

3 Comparison of Blind Equalization Schemes

It is worthwhile to: compare the various blind equalization achemes in:
terms of their ability to correctly open the eye for the benchmark sys-
tem of the previous section. There are two questions which must be
asked. First, is the true equalizer a solution point of the candidate blind
equalization scheme? Second, is this the only solution? The first subsec-
tion di  that the 1 energy methods are unimodal, but
that the point of minimum energy may not be the best equalizer in the
sense that it may fail to open the eye even when an open eye solution
exists. The second subsection shows that the minimum variance meth-
ods do always contain the correct equalizer as a solution, but that there
are-also other; local minima to- which the scheme may converge. Finally,
we: introduce the criteria of minimizing the lo norm of the output of
‘the equalizer. This error criteria may contain “the best of both worlds”,
incthat the true-equalizer is a solution, and that this solution is, in fact,
globally attractive (in: the sense that the error criterion as a function of
the equalizer tap:p values is and hence uni-modal).

3.1 Minimum Energy Methods

One way to approach the blind equalization problem:is to set up a “cost”
function that is the mean squared error of the output of the channel-
equalizer pair, and to attempt to: minimize the cost by choice of the
cqualizer parameters. That is, one seeks to find the minimum of

E{is;} = ] = Jocl; @1
where
1»
¢r I
¢ d2 1 L
é2 &1
$2
iis & el ¥ lution ix, and
oy §mg Emt &o Ean €20 o fT (3.2)

is the equalizer. (In (3.1} we have assumed an ii.d., property on the

dimension, the solution to this minimization problem can be written in
closed form using the pseudo-inverse

§ay = *(‘1’@)@@) Yl 7 e

The infinite dimensional version of this falters because the matrix
g:l)%‘) fails to: be:invertible; a fact which was exploited in [11].
For example, consider the particular channel a=0.5, b=3.0 (¢; =
—3.5, ¢2 = 1.5). With 10 adjustable taps:in the equalizer (i.¢:, n. = 11}, -
the above equations can be solved readily to give

£=(0.041,0.112,0.230,0-424,0.713,1.060,0.713,0.424,0.280,0.112,0.041)T .

Despite the fact that ¢ # b~1, (recall that the optimum equalizer is
defined by (2.3}) this minimum energy solution is symmetric. In: fact,
this £ fails to even open the eye; as can be readily calculated by noting
that the convolution of ¢ and € is not dominated by a single tap (the
largest element of v is-1.72, and the sum of the other elements i is 4 A7)
Thus, despite the fact that the minii energy soli is: unique, it
is not necessarily the right criterion to miniinize. (For minimum phase

temsthe minh ergy solution is satisfactory [1].) This symumetry

of the is maintained by the energy fio- matter
how large an equalizer is ch For such HaH phase ch ls,
then, there is no to expect. the mini energy solution to give

& viable equalizer in: general (see: [10] for related issues).

3.2 Constant Modulus Algorithms

Algorithms of this class were developedin {2, 3, 10, 4, 5}; from which we
select: the so-called constant modulus algorithm (CMA) (actually first
developed in [3]) as & representative example. The idea behind CMA is
that it tries to minimize the: vari: or deviation of the channel output
from its desired value of £1 (since thesymbols are binary). The criterion

is: to minimize ) )
B{us;i? - 1}

by choice of . Clearly, an equalizer which forms the exact inverse (mod-
ulo a scaling and a time delay), e.g., like the one in section 2, falfills this:
criterion, and it can be shiown: that this answer is a stable equilibrium
[12}.. Unfortunately, there is also the: possibility that the equilibrium i is
not unique, that there may exist other, local m.\mm& to which: the: algm
rithm may converge. This is indeed the case, ing that the i;

of taps is finite. For instance; in [6] it is: shown that if the channel has
& single sf.abl): pole with. IR transfer function Y iogafz%, then there
exist undesirable local for a.two tap equahzer GNm.e two taps
suffice to: form: the exact inverse of such. a channel.) Examples such as
these easily: exbend to tlm case where an arbxtmry but: finite number oF
taps: are utili; ble local
ing to cquahzcr parumctcr vAhxcu which do not even npproxuﬂabc the:
channel inverse. If the number of taps in the equalizer is allowed to: be.
infinite then no local minimum can oceur [13, 10J, though there may be.
saddle points.. This infinite tap case is primarily of theoretical

input symbols.) If applied naively, this approach is useless, be: the
mininwem eucrgy solution s clearly at § = 0. One solution [L1] (based
on related material {I]) and [7, 8, 9], is to fix one of the taps, say

&g = I. (3.3}
Then the tionhas a rivial So [|®¢]lz can be rewrit-
ten by excising the col ponding to the term £ (and labelling
tas y) as
; 1 o] |
¢ 1 ¢ o o
#2 & e 1 .
¢ 1 S e | = (et
4 $1 L g“ 3 L
» ¢ é 2 ot
$2 N o}

wliere the subscript (d) indicates the
from @ and the dingel

I of the appropriate column
ol .. When the equalizer has finite

L

interest.

3.3 Minimum [ of Equalizer QOutput

The failure modes of the above algorithms indicate the need for a. bet-
ter approach. Indeed, ider the problem from the point of view of
opening the eye. In terms of the ch l-equalizer lution v, the
eye is open when [ymgz| dominates E‘ ifmaz |vil. Obviocusly, this sum
is: closely related to an [y (sum: of absolute values) eriterion. In: terms
of norms as. in section 3.1, this ly tap quivalent to a
oo (also known as: sup: nmml minimization of the output &g {14} of
the equalizer assuming the input is sufficently rich but not necessarily
iid. This line of reasoning suggests that it might be advantageous to

lelle & max fsa] = |l = flee], = 2catcar + ],

with notation as in section 3.1. (A similar idea appears (independently)
in[7, 8] and'in a-more refined form in [9.) Again, it is cssential to insist
that at least one element of § be nonzero, as in (3.3}, to avoid the trivial
£ = O solution,

In the next section we demonstrate that the error surface associated
with: (3.4) is al with t to: the adapted taps £(q) (this

Lion: is

(31}
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result is also proven in {9]), and that the resulting minimization will
always open the eye, assuming the equalizeris of sufficient length, for any
channel of the form (2.1). While simulations indicate that the method
works for many more complex systems, we hesitate to claim without
proof that it must open the cye for all possible channels (except those
with zceros on the unit circle). In fact, later we indicate that at least for a
non-generic class of channels there exists a problem with non-uniqueness
of solution to the {0 minimization.

I'his section demonstrates that the loo minimization gives the correct
desived equalizer in the cases above for which the minimum energy and
minimum variance schemes fail. Using the standard {; minimization
package from the NAG library [15, 16], it is easy to show that for the
chanuel with a=0.5 and b=3.0, and with ten adjustable taps (n = 11)
subject to (3.3), the loo output criterion gives

(:(0.003,0.012,(}‘037.0.1ll,0.333,!.000,0.500.0.250.0.124,0»080.04076)1..
which is very ncarly an exact truncation of the ideal value (2.3).
For the channel in section 3.2 which caused CMA to misbehave we
find again that the lo minimization gives the desired answer (modulo
truncation). For example, if o = 0.7 (pole position) and n = 11, then

the (o minimization gives

£=(0.0,0.0,0.0,0.0,0.0,1.000,~0.700,0.0,0.0,0.0,0.0)T .

4 Theorctical Development

This section presents two results, First, the ervor surface over which the
minimization is performed (i.e., subsequently upon which the adaptive
algorithin performs a gradient descent) is shown to be convex. This
iniplies that any local minimummust also be a global minimum. Second,
for channels of the type (2.1), the desired equalizer (2.3) is shown to be
a solution to the minimization of the norm (3.4).

Theorem 1: [}y 2 3. il is convex with respect to €.

Proof: \We have

o= 3 = [ S|

noting the « weights are a linear function of the ¢ equalizer taps; so
write v = v[¢]. Let €2 €y, € €1y, and 0 < n < 1. Then

"’1[(]—1]){"4—716"]"1 = Z|Z¢;((1-ﬂ)€?_j+ﬂ€?.,')|
i J
ST b0+ DIt
T ]

= (1= n)|]ree]], + [ et]), -

u}

Two remarks are in order. Firstly, this convexity is unalfected by
the number of equalizer taps, be they finite in number, semi-infinite or
doubly infinite. Secondly, fixing a center tap (or applying any linear
constraint for that matter) does not destroy convexity.

From the above we can conclude that fixing the central equalizer tap
at € = 1 implies that }|6[}co is convex with respect to £ 4), see (3.4). Fur-
ther, and significantly, any truncation or finite equalizer approximation
neecessary in practice will not destroy this convexity.

Next, we examine the solution to the lo problem by defining the

function
1o 2 ZI’Y}'I=ZIZ¢,‘_.‘€.‘| (4.1)
) j i

and showing that at the desired equalizer sctting = (as defined in (2.3)),
the dircctional derivatives are all nonnegative. This demonstrates that
the desired answer is a solution to the oo minimization problem, at least
for the simple class of channels (2.1).

Theovom 2: Consider a 2 tap FIIU channel with impulse response
(2.1). Let = denote the (doubly infinite) FIR inverse of (2.1) as in (2.3).

Then, with the constraint that £ = 1, §; = Z; minimizes "d’E”w.

Proof: Pick a nonzero bounded vector A with Ap = 0. We examine
the directional derivate of f(-), and show that it is always nonncgative.

Note that
JE+ha) =D | dimilei + o) (12)
J i
Let vy = Z‘.qﬁj_.'A.'. Then

HEe+ha) =" |y = hoj (1.3)
J

where v is the.convolution of the channel (2.1) and the equalizer £. Since
= Z is the inverse of (2.1}, 9 = 1 and +; = 0 for i # 0. Breaking the
sum into two pieces corresponding to where v; = 0 and «; # 0 gives

=11+ huol+h Y lyjl. (4.4)
} J#0
For h small (such that [hv| < 1),
1~ [hvol € [1 + hvo| < 1 + |hvo] (4.5)

which implies that

143 ol = Ihlluol € 6+ hA) S 1+RY lvjl+Ihllwl. (46)

J#0 Jj#0

‘The right hand derivative in the direction &

PP (ETNES (G

h—o+ h @1

can be bounded

D tust = Il € fa Y Ivl + Twol. (18)
J#0 J#0
since f(¢) = 2;‘ Ivjl = 1. For the simple channel with one zero
inside the unit circle and one zero outside, it is easy to check that
Juo] < Zj;m Juj] due to the requirement that A¢ = 0. The left hand
derivate can be calculated exactly as above, to show that all derivatives
are nonnegative. o

Theorem 2 supposes that an infinite length equalizer is available.
Good approximations result, however, when the equalizer is truncated,
and simulationsindicate that the length need not be excessive. Note that
the required length of the cqualizer is not a limit of the o approach,
but rather is a fundamental limit on the existence of an equalizer for the
given channel.

5 Algorithm Development

5.1 lp Norm Approximation

The results of the previous section would be of a purely academic interest
if it were not possible to design a simple and effective recursive adaptive
scheme to implement the minimization. In fact, general I} minimization
is complicated algebraically and is equivalent to a lincar programming
problem {15]. Exact implementation of the algorithm is therefore pre-
cluded in a real time setting. However, due to the structure of the prob-
lem, a simple and effective way to approximate the desired minimization
arbitrarily closely is available. Assuming a finitely parametrized equal-
izer (recall that loo convexity is preserved when truncating from infinite
to finite parameterizations), denote the finite equalizer (version of (3.2))
by

€2 (o B, B0 By oy BT (s.1)
which is subject to the fixed tap constraint (3.3).

Instead of minimizing the infinity norm of the output of the cqualizer,
consider minimizing the I, norm of the output. (In the next section
we verify that convexity is not destroyed by such an approximation.)
For large p, the two problems will have answers which are virtually
indistinguishable. Though there are potential numerical problems (for
very large p), it appears that these can be overcome by a judicious
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uormubzauon. The goal then, is to minimize E{||6x}lp}, which can be
lished via. a gradient di £ strategy.

Dcﬁxm the instantancouscost J £ [6%[P. Then the algorithmbecomes

For that non-generic class of channels one can cure the non-uniquencss
of the global minimum by generalizing the fixed tap constraint to more
general sets of linear constraints on the adapted taps (each constrained
adaptation giving a different set of non-generic problem channels).. This
mathematical generalization is straightforward,

Implicit in. our scheme: in: the need for automatic gain control {AGT)
applied to the signal §x. This is particularly appropriate for the PAM
generalization of our binary analysis, for which the algorithms: we: have

-~ - as alsslP
Eaylk + 1) = pmm—— = Eay (B} - ,! ad
Beay(k) Ecaylk)
where §cqy(k) is the vector of current estimates of the lizer p develop

ters excluding the a; parameter frozen at unity, 8 is the current output
of the equalizer, and p is: a small positive stepsize. To calculate the
gradient term, recall (Fig.1) that the equalizer output may be written

2
Ea‘-aﬁkh‘h i

=0

ETRNX (k) = (R Xy (B) + 2hm

5k

52)

wiieve X (k) = (Zgy Sheyy <y Thozn)T is a regressor of past inputs to
the cqualizer. The (d) subscripted ag before denote the excised:

" versions. The gradient. is ﬂwn > 2){

alexl

=i = p6i6ulP 2 Xy (k) (5.3)
PN pEfSkl (k) (5.3}

whicls then gives the algorithmy in its implementable form
= S &y (P2 . -
Eeaylk + 1) = Egaylk) — w i ol Xeay(k) (5.4

where the constant p has been absorbed into the stepsize p and the
factor n hins been added as & normalization to help combat potential
I problems when bers to a high power. Naturally,

g m

the algonthm works.

5.2 Couvexity Preservation Under Approximation

Tl ‘m. 1 addressed the ity of the ideal I cost applied to the
eqnnhzer output & (this is equivalent to the ly-norm of the overall con-
volution of cliannel and equalizer (1.1)). However our algorithr used
the Iy approximation and we: need to be concerned whether we have
detroyed the convexity. Fortunately, the answer is no.

Theorem 3 E{ l&kf”} is. convex with respect to £.

Proof: We have

F e off (o - ;
é?za{ 18xlP} = E{pselsulr~? X (k).
Then the Hessian is given by

Z { E{H”}} E{plp— DI:lP? X (RIXT (1)} 2 0

2:% 2er

scalar
o
Note the above proof is not easily ded'to d e atrict co -
ity since positive definiteness of the Hessian is not a necessary condition.
for strict convexity. Also, as before, convexity of E{l&kP'} with respect
to-§gqy is guaranteed.

6 Contments

This paper has shown that for a class of channels blind equalization.
is possible using a convex oo m'm Gﬂ the equalizer om;mt. However,
for a class of non-generic ch is: h

uniqueness of the cost. minimization smcc the criterion is not sfrictly
convex. To make this clearer, consider the following construction. Sup-
pose & channel has an inverse with more than one maximal impulse re-
sponse value. Then there exist at least two equalizer parameter settings
withy the: same: (hypothetically minimizing) cost and it is easy to check
that convex combinations of these setlings also achieve the same cost.
Sucl convex combinations will not. generically open the eye diagram.

d apply without change. AGC corresponds to a simple scalar
version of any of the blind algorithms develeped in [2, 3, 5}.
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