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ABSTRACT

The Quantized Regressor (QReg) algorithm is a vari-
ant of the Least Mean Square (LMS) algorithm. It is at-
tractive due to its computational simplicity, and it serves
as a model of LMS under quantization errors due to digi-
tal implementation. The quantization present in the QReg
algorithm makes its convergence properties distinct from
those of LMS. In this paper, we describe excitation condi-
tions which guarantee convergence of QReg assuming that
the quantization in the algorithm is fine enough. In ad-
dition, given a fixed fineness of quantization, we develop
excitation conditions such that QReg with that quantiza-
tion fineness converges. The excitation conditions take the
form of a degree of excitation, and one may interpret this
as a measure of robustness of LMS to quantization errors.
We provide examples which demonstrate the theory.

I. INTRODUCTION

By far the most widely used adaptive algorithm for FIR
adaptive filters is the Least Mean Square (LMS) update
scheme (1], and a good deal is known about its convergence
properties. However, implementations of the LMS adaptive
filter invariably involve quantization of signals within the
adaptive mechanism, which can change the characteristics
of the adaptive filter behavior. A particularly pervasive
source of quantization arises from digital implementations
of the adaptive filter [2]. Finite precision arithmetic by na-
ture uses quantized representations of real signals. Addi-
tionally, quantization in the LMS adaptive filter may arise
by design. For instance, in order to reduce the algorithm
computational complexity, one may introduce coarse quan-
tization of signals, which replaces costly multiplications by
bit shift operations, as in, e.g., [3]. In terms of the con-
vergence properties of the (now quantized) LMS update
scheme, the presence of the quantization errors may have
adverse effects, as demonstrated in [4], even when the stan-
dard Persistent Excitation (PE) condition is fulfilled.

We consider in this paper a modified version of the
LMS algorithm, in which the data in the regressor vector
are quantized for use in the adaptive algorithm. Previous
studies of this Quantized Regressor (QReg) algorithm ap-
peared in [4] and [5]. Here, we formulate conditions which
guarantee that the QReg algorithm rejects the destabiliz-
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ing influence of the errors introduced by the quantization.
The conditions hinge on satisfaction of a “degree of per-
sistent excitation” for the (unquantized) LMS algorithm.
The result demonstrates a tradeoff between the fineness of
quantization in QReg and the degree of excitation required
to guarantee adaptive filter convergence. Thus, given a
maximum quantization error A*; a degree of persistent ex-
citation o (which depends on A*) will ensure exponential
convergence of the adaptive filter parameters. Conversely,
if the regressor satisfies a PE condition of degree o, then
quantization errors bounded by A* (depending on «) may
be tolerated. In the course of developing these results,
we provide quantitative relationships between the degree
of persistent excitation o and the quantization fineness A*
such that the convergence results hold. We also show that
previous examples of misbehavior due to quantization ef-
fects (such as those in [4]) violate these convergence crite-
ria.

Excitation which provides a strong level of stability for
the LMS algorithm will yield stability for QReg, if the quan-
tization in QReg is fine enough. This effect is yet another
example of the robustness provided to adaptive systems by
persistent excitation [6]. In this case, we have satisfaction
of a degree of persistent excitation condition providing ro-
bustness to errors due to quantization.

We approach the effects of quantization from a deter-
ministic viewpoint. A wide range of related work has used
stochastic models for quantization in LMS; two examples
are 7] and [8]. Note also the relevance of studies of signed
regressor algorithms, e.g. [9] and [10], to this work, though
the signum function quantizer is not a member of the class
of quantizers we consider here.

In Section II, we review the LMS algorithm and recall
its stability under Persistent Excitation. We then introduce
the QReg algorithm, as implemented with a quantizer taken
from a class for which quantization errors are bounded.
This class includes uniform quantizers, which model round-
off errors in fixed-point arithmetic [11]. We note the persis-
tent excitation condition for the QReg algorithm. (We say
an excitation sequence is persistently ezciting for a given al-
gorithm if that algorithm is ezponentially steble under that
excitation.) Section III presents our main results, which,
as discussed above, relate quantization fineness in QReg to
a degree of excitation guarantecing stability. Section IV
contains examples which illustrate the theory developed in
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the paper, and Section V provides concluding remarks.

II. THE LMS AND QUANTIZED

REGRESSOR LMS ALGORITHMS

The well-known LMS algorithm [1] attempts to model
a time sequence {yx} as X7 6, where the regressor vector
Xk = [Tk k-1 -+ Ti—nt1) is derived from a data sequence
{z+}, and where 6; is an n-vector of parameter estimates.
The LMS algorithm is

(2.1)

with e = yx — X{Gk termed the prediction error. If we
assume that yj is generated as X76*, for some “true” pa-
rameter vector §*, then we may speak of parameter errors
G, = 6" — 0).. The prediction error is then e; = ngk, and
(2.1) becomes

Ory1 = O + pXreq,

Ort1 = [I — pXe X165 (2.2)
The error system equation (2.2) is well-studied [12].
When the sequence {zx} is periodic, one may describe
a sharp stability /instability boundary for the exponential
convergence of 8 to 0 in (2.2) [13], given in terms of the fol-
lowing persistent ezcitation (PE) condition. Although we
confine our attention throughout this paper to periodic ex-
citation, the analysis may be extended to encompass more
general excitation sequences, using the framework in [6).

PE for LMS: An N-periodic n-vector sequence {Xy} is
PE for LMS if there exist § > a > 0 such that

N
I > % S X XF > al. (2.3)
k=1

\YAYAY

If {X} satisfies (2.3) for 8 > « > 0, then there is a p* such
that for all 0 < p < p*, (2.2) is exponentially stable at the
origin [13]. We think of @ and § in (2.3) as specifying the
degree of PE for LMS. In order to make this explicit, we
define

PE(e, ) for LMS: If {X;} satisfies (2.3) for a given
B > a > 0, then we say that {X;} is PE(a,B) for

LMS. YAYAY

Note that as « increases, the contractive term in (2.2) is
strengthened. Thus, a larger degree of PE corresponds to
enhanced exponential stability for a given, fixed, u.

Now suppose that a quantized version of X} is used in
place of X} in the parameter update algorithm (2.1). We
restrict our attention to quantizers of fineness A, that is,
functions Qa(+) which are monotonic non-decreasing, and
for which |Qa(z) — z| < A. The uniform quantizer de-
picted in Figure 1 is of fineness A; this quantizer is a com-
mon model for one type of fixed point roundoff. If Qa(Xy)
replaces Xy in the LMS algorithm (2.1) (with Qa(-) act-
ing on a vector indicating a term-by-term quantization), we
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Figure 1: Uniform quantizer of fineness A.

have the Quantized Regressor LMS algorithm of quantiza-
tion fineness A (QReg(A)):

Ory1 = Ok + pQa(Xi)ex. (24)
In error system form, (2.4) is
Orsr = [T — pQa(Xi) X{ s (2.5)

The corresponding condition on {X;} which yields expo-
nential stability for (2.5) (given small enough p) is [4]

PE for QReg(A): An N-periodic n-vector sequence {X}
is PE for QReg(A) if there exists v > 0 such that

N
min Re {,\; (% k; QA(Xk)X,?) } > 1.

(2.6)

vvv

In (2.6), we appeal to the real part of the eigenvalues of the
excitation matrix due to its lack of symmetry (the LMS ex-
citation matrix in (2.3) is symmetric non-negative definite,
with all its eigenvalues real and non-negative). Conversely,
if for {X1}, satisfaction of (2.6) requires a negative -y, then
for 4 small (2.5) will be unstable at the origin [13].

If {X+} is PE for QReg(A), then {X} is PE for LMS,
but not the other way around [4]. In other words, exci-
tation conditions which yield good performance for LMS
are different from conditions yielding good performance for
QReg(A). However, in Section III we draw relationships
between PE for LMS and PE for QReg(A) depending on
a, B, and the quantization fineness A.

III. PE AND QUANTIZATION

We now state quantitative relationships between de-
grees of persistent ezcitation and tolerable levels of quanti-
zation.

Theorem 1: Suppose an N-periodic, n-vector sequence
{X(k)} is PE(a, B) for LMS. Thenfor A < A* = a/(v/nB),
{X(k)} is PE for QReg(A).

Proof: For notational convenience, set

1 N
R=— ,;, Qa(X1)XT. (31)



A sufficient condition for {X(k)} to be PE for QReg(A) is
that the symmetric part of R is positive definite. Setting
8k = Qa(Xx) — Xk, we have

N
1 1
wm(R) = 5(R+ B =+ S XuX[ +5,  (32)
k=1

with § = (1/2N) M, [6x XT + Xx67] defining S in (3.2).
Since {X(k)} is PE(w, ), sym(R) is positive definite if
|Mmax(S) < a. Noting that § is symmetric, and using

[Almax(S) = max |vTSU|
llvll=1

N
L > %(vTékaTv +vT X 6T0) (3.3)
k=1

= maxX —
llell=1 N £=

< Avmax | Xl.

Now, )\,MX(ZX,CXE) > maxy || Xk|?, so that {X(k)} be-
ing PE(a, ) for LMS implies max; || Xx|| < VB. Eqn. (3.3)
then shows that |A|max(S) < Av/nB. So, if A < a/y/nB =
A*, then Apin (sym(R)) > 0. In other words, {X(k)} is PE
for QReg(A). \VAVAV;

Thm. 1 shows that a given degree of PE for LMS guar-
antees PE for QReg(A) if A is small enough. The bound
A* given by Thm. 1 may be conservative, because only
magnitude information is used in the development of (3.3),
while the basic instability mechanism for QReg derives from
misalignment between Qa(Xx) and Xy [5]. However, the
bound is tight for the first order case (n = 1). Whenn =1,
directional information is not distorted by sign-preserving
quantizers, and only magnitude information is important.
Thus, Thm. 1 yields an exact bound in that situation.

Thm. 2 provides a converse to Thm. 1, by showing that
given a quantization fineness A*, a corresponding degree of
PE(w, ) may be chosen which, if satisfied by a sequence
{X(k)}, implies {X(k)} is PE for QReg(A*).

Theorem 2: Given A* > 0, dimension n, and condition
mumber r = f/a, set ¢* = nr(A*)2. ¥ a > aF, then
having {X(k)} be PE(a,ra) implies that {X(k)} is PE
for QReg(A) when A < A™.

Proof: By Thm. 1, having {X(k)} be PE(a,ra) implies
that { X (k)} is PE for QReg(A) if A < a/y/nra = \/a/nr.

If a > a*, then A < A* = /a*/nr implies A < (/a/nr,
proving the theorem. \vAvAv/

Thm. 2 specifies a*, the degree of PE which is needed
in order to tolerate quantization errors up to A*. Notice
that this degree depends in part on the eigenvalue disparity
7 of the LMS excitation matrix (this excitation matrix is the
summed outer product in (2.3)). Putting the two theorems
together, we have the
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Main Result: Given that {X(k)} is PE(a, B) for LMS,
then there is a fineness of quantization A*(a,B) under
which {X(k)} is PE for QReg(A), for every A < A*. Con-
versely, if we have a given quantization fineness A and con-
dition number r, there are a*(A) and f* = ra* such that
having {X(k)} be PE(a*, 8*) for LMS implies {X(k)} is
PE for QReg(A).
Proof: A simple application of Thms. 1 and 2.

\VAVAYS

Figure 2 portrays a diagrammatic view of the Main Result.
Essentially, we have described a subset of the class of exci-
tation which is PE for QReg(A): that which is PE(a*, 8*)
for LMS. A useful interpretation of this result is that per-
sistent excitation for LMS gives robustness to quantization
error. On the one hand, if we expect a certain degree of PE
from the input signal, then we may determine a sufficient
level of quantization fineness for which QReg stability is
retained. On the other hand, for quantization of a given
coarseness, we may specify a degree of PE under which the
QReg algorithm is stable.

PE for QR(A*)

all excitation

Figure 2: Relationships between PE for LMS
and PE for QReg(A).

How much PE is needed for QReg(A*)? A glance at
Thm. 2 shows that the smallest possible value of a obtained
is (A*)?n, which occurs when 8 = a, or r = 1. Thus, this
smallest degree of PE requires that the eigenvalue dispar-
ity of the excitation matrix be unity. In order to allow
for a non-unity eigenvalue disparity, one must increase the
needed lower bound on the PE condition.

IV. EXAMPLES

We now present some simple examples. These exam-
ples illustrate the application of the theory in Section III,
provide insight into the potential restriction of the quan-
tization bounds, and relate this work to the examples of
QReg instability appearing in [4] and [5].

Example 1 (from [4] and [5]): Set n = 3, and let {z4} be
the 3-periodic sequence ...,2.6,—1.4,—1.4,.... The quan-
tizer Qa() is a uniform round-off quantizer of fineness 1/2
(essentially, @;/5(-) rounds to the nearest integer). The
LMS excitation matrix in (2.3) is PE, with a = 0.0133 and
B =15.333; r = /a = 400 in this case.



The minimum real part of the eigenvalues of R from
(3.1) is —0.0667, implying that QReg(1/2) is locally un-
stable at § = 0. Applying Thm. 1 gives A*(a,f8) =
a//nf = 1/300 < 1/2, which indicates that the quan-
tization fineness A = 1/2 is much coarser than the level
required in Thm. 1. Conversely, Thm. 2 determines the
minimum excitation level a*, given A* = 1/2 and r = 400,
as a* = (A*)?nr = 300 > 0.0133. Thus, the level of PE for
LMS provided by the regressor sequence is far below that
specified by Thm. 2, and we are not guaranteed robustness
to quantization errors with A = 1/2.

The misbehavior of QReg(1/2) for this example is in
agreement with the main result, although the bounds of the
theorems are rather unrealistic. In fact, with a quantiza-
tion fineness A’ = 0.465, QReg(0.465) is stable under this
excitation sequence. The theoretically required quantiza-
tion fineness of A* = 1/300 is much smaller than the level
of fineness which actually suffices. \VAVAV

Example 2: (similar to Ex. 31in [5]): Letn = 3, and con-
sider {zx} = {...,1.9,0.9,~1.1,...} as a 3-periodic data
sequence. Let @Qa(-) be a quantizer which truncates to the
nearest integer multiple of 2A. (The characteristic of this
quantizer is the graph of Fig. 1 shifted right by A/2.) Thus,
for A =1/2, @/5(+) truncates to the nearest integer, and
{@Q1/2(zx)} = {...,1.0,0.0,-2.0,...}.

The sequence is PE(a, ) with a = 0.9633, 8 = 2.33,
and r = f/a = 2.42. However, QReg(1/2) is divergent,
with the minimum real part of the eigenvalues of R in (3.1)
(calculated for this case) being —0.5667 < 0. Thm. 2 gives
a* = 1.81, which is the degree of PE for which QReg(1/2) is
convergent, given r above. The actual excitation has degree
of PE 0.9633 = a < a* = 1.81, violating the conditions of
Thm. 2. Applying Thm. 1 shows that quantizing finer than
A* = 0.364 will enable convergence of QReg(A), A < A*.
Indeed, if we set A = 0.36, then the minimum real part of
the eigenvalues of R from (3.1) is 0.4080 > 0, implying such
convergence for small enough p in (2.4).

This example demonstrates a non-trivial situation in
which the theoretical bounds on quantization fineness and
degree of PE are close to the true limits. \VvAvAv

V. CONCLUSION

In this paper we have addressed issues regarding quan-
tization in the popular LMS algorithm. We focused on the
QReg algorithm (defined in (2.4)), which is a possible al-
ternative to standard LMS when computational simplicity
is paramount [4]. With regard to this algorithm, condi-
tions for parameter convergence were developed by relating
degrees of persistent excitation (provided to standard LMS
by an input sequence) to quantization fineness sufficient for
convergence of QReg. For a class of excitation which satis-
fies a degree of PE condition for LMS, we may find a quan-
tization fineness A* such that this class of excitation is PE
for QReg(A*). Conversely, given a quantization fineness
A* and a condition number for the excitation matrix, we

may specify an excitation class which is PE for QReg(A*)
in terms of a degree of PE condition for LMS.

An interpretation of this result is that persistent ez-
citation will provide a degree of robustness to quantization
errors. This paper has quantified the level of robustness
attained, and has provided examples exhibiting the flavor
of the result in application.
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