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Abstract

The Constant Modulus Algorithm (CMA)
and Decision Directed (DD) equalizer are two
ways to approach blind equalization of signals
which are known to lie on a circle of fixed radius,
but where specific values at any given time are
unknown. In M-ary Quadrature Amplitude
Modulation, the signals lie on n circles of known
radius. This paper presents two possible
approaches to the n-modulus problem, both in
the spirit of "feature reconstruction” algorithms.
The Multiple Modulus Algorithm uses a
straightforward generalization of the CMA cost
function to derive its update, while the Decision
Adjusted Modulus Algorithm is a hybrid of the
CMA and the DD approaches. The algorithms are
analyzed and compared in a simple problem
setting.

1. Introduction

Blind equalization is a notoriously difficult
task. Consider the scenario of figure 1, where a
signal y is sent across a channel and a corrupted
version x is received. Suppose that the channel
can be modeled by the linear autoregression
1/W(q-1). The task of the blind equalizer is to
build the inverse of the channel. If W(q'l) could
be made equal to kq-dW(q-1), then the source
could be adequately reconstructed. But how can
such W(g-1) be built?

If nothing is known about the character of
the transmitted signal, then blind equalization is
patently impossible. Often, however, the source
will have some known property which can be
exploited to help determine how the received
signal has been corrupted. In the baud
synchronous binary phase shift keying problem,
for instance, the source consists of just two
possible values, +1 and -1. In this case there are
two popular methods used to adjust the

coefficients of the W(q'l) polynomial.

The first, the Decision Directed (DD)
equalizer (see [2] and [6]) compares the
reconstructed signal § to the nearest value +1 or
-1, and uses this difference to drive the adaptive

* supported by NSF grant MIP8608787

'CH2673-2/89/0000-0972 $1.00 © 1989 IEEE

Cornell University, Ithaca NY, 14853

algorithm. Thus the "decision” to compare § to +1
or to -1 "directs" the subsequent evolution of the
adaptive filter parameters. The second approach,
the Constant Modulus Algorithm (CMA) [1]
attempts to minimize the difference between
unity and the modulus of the reconstructed
signal. The cost function Joma(k) = (92(k) - 1)2 s
used to define the gradient descent algorithm

Wiket) = Wik) - 1 9 (0 (P20 - 1) XK (1)

where W(k) is a vector of the weights of the
adaptive filter at time k, XT(k)=(x(k), x(k-1),...,
x(k-n)) is a regressor vector of past received
signals, and p is a small positive stepsize. Thus
the error between $2 and 1 drives the adaptive
update. Analysis of the local stability of real
CMA can be found in [3]. Throughout this paper
we restrict discussion to the 1-D real case
instead of the 2-D complex case, with the
understanding that the same philosophy applies
in the more general setting.
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Figure | : Blind Equalization

Sometimes the transmitted signal does not
have a single constant modulus as in the above
example. In M-ary QAM (Quadrature Amplitude
Modulation [5]), for instance, the transmitted
source can assume a whole constellation of
possible values which can generally be
considered to lie on several circles of known
modulus. The DD strategy can be employed, but
as the number of points increases, finer
distinctions must be made, and the probability of
erroneous decisions increases. CMA can also be
applied, but it can only adapt to match a single
constant modulus. Straightforward application of
the algorithm to the n-modulus problem will
cause the parameters to converge to some
average location which is a tradeoff between the
various moduli.



Yet the idea of "feature reconstruction”
that underlies CMA is enticing. If the source lies
on several known circles, why not reconstruct
this feature by generalizing the cost function to
one which attempts to minimize the error
between the reconstructed signal and each of the
known moduli? This leads to the Multiple
Modulus Algorithm (MMA) of section 3.
Alternatively, why not reconstruct this feature
by minimizing the error between the
reconstructed signal and the nearest of the
known moduli - essentially "deciding” at each
step which “constant" to use. This leads to the
Decision Adjusted Modulus Algorithm (DAMA) of
section 4, which combines many of the strengths
of CMA with the DD approach.

2. CMA in a Multiple Modulus Setting

Consider a simple test case where the
transmitted source y is known to consist of the
four real values +1, -1, +3, and -3. The channel
model is the simple first order autoregression

T with w;=1, w;=-.9, and the adaptive

Wi1-w2q-
equalizer contains two adjustable parameters A
and ®;. The reconstructed signal is calculated as

P = #10) x(0) + F2(k) x(k-1). (2)
Note that if wi= % and wa= &, then §(k+1)

exactly reconstructs y(k). If the ratios 2/ &1 and
wy/w are equal, this is an admissible solution,

since then W(q'l) = kq-dW(q-1) for some k and d.
The job of CMA is to adapt the &;, based only on
measurements of the x and knowledge that y
consists of +/-1 and +/-3 (but without knowing
the actual value of y at any particular time).

Suppose that the four y values are chosen
independently and uniformly, and apply the
CMA update (1). Then the parameter estimates
(%, #) tend to converge to (0.3489, -0.3149) or
its negative, depending on the initialization. The
ratio %/ %;is -0.9025, which is the admissible
value -0.9 to within experimental accuracy.
Suppose, however, that y is chosen in a heavily
dependent way, say by the Markov chain
detailed in figure 2. Then the CMA updates tend
to converge to (0.2988, -0.2544) or its negative,
which are not admissible solutions since the
value of the ratio is -0.85.
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Figure 2: Transition probabumes for example

Such behavior appears to be generic...
when the transmitted source is white and
uniform, then CMA can converge to an
admissible solution. When the source is highly
correlated and nonuniform, CMA does not attain
an admissible solution. What we desire, then, is
an algorithm for which an admissible solution is
always a point of local stability, irrespective of
the correlation and uniformity of the source. We
propose two candidate algorithms.

3. The Multiple Modulus Algorithm

Suppose that the transmitted source lies on
n circles of known modulus, where Mj, ... , My
designate the squares of the moduli. The feature
reconstruction idea suggests that it might be
desirable to try to minimize the cost function

Tawal)=(2(k)-M1)2(92(K)-M2)2--Bk)- M2, (3)

One way to proceed with this minimization is to
pursue a gradient descent strategy, updating the

parameter estimates W in the direction opposite

the gradient at each timestep. The MMA
adaptive algorithm is then
Wik+1) = Wik - o Hmmatk) (4)
oWk

Since 9(k) = XT(k) W(k), this derivative can be
evaluated directly as

Due to its form as a gradient minimization
of the cost function Jyma, analysis of (4) can
proceed similarly to the analysis of CMA in [3]
and [4]). The algorithm (4) will stop updating, on

A - § (92-M,) (J2-My) -
aw

p H(yZM)
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(y2-My) [ (5)

average, whenever
avg(a—L(—lJ alk ) ) I o (6)
aWE ) W= we
where "avg" represents an appropriate time

sample average and W* indicates an averaged
equilibrium. Moreover, in order for this
stationary point W* to be locally exponentially
stable we will need

avg (

Wi(k)= we

2pmalk)
3 We(k)

>a>0,

(M

‘and a sufficiently small stepsize.
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Once local stability is established for a
given average equilibrium point, the key
question concerns the size of the region of
attraction. Since (5) contains high powers of 9,
(4n-1, to be exact), one might anticipate
numerical problems. Indeed, typical simulations
require stepsizes on the order of 10-8. A
practical modification, then, is to normalize the
stepsize by the largest even power of ¢ found in
the update term. Such normalization is common
in LMS to take into account variations in the size
of signals.

For the example of the previous section,
n=2, M;=1, and M3=9. Substituting (5) into the
gradient algorithm form (4) and normalizing
yields the update form

W (k+1)=W(k)- i Pk (¥2(k)-M 1) (Y2 (K)-Mp)- -
(292(k)-(M1+M2)X (k) (8)

where pyx = p/(9(k)+1) is the normalized
stepsize.

There are several equilibria for (8), which
correspond to W values that cause $=0, 2= M,,
{2= M,, and §2= (M;+M,)/2.To examine the
stability of these equilibria, we can construct the

matrix of partial derivatives as in (7). This gives

%{ﬁ‘f = (§2-My) (§2-M3) (2§2-(M1+Mp) X XT
+2 92 (92-My) (202-(M+M2)) X XT

(9)
+2 92 (§2-M1) (2§2-(M1+M2)) X XT

+ 492 (92-M;) (§2-Mp) X XT

where the time index k has been dropped for
conciseness.

Each term in (9) consists of a scalar,
dependent on §, M; and M; multiplied by the
vector outer product XXT. Since XXT can itself
never be positive definite, it is necessary to
consider the average of (9). In particular, if avg(
XXT)> o > 0, (often called the persistence of
excitation condition) and if the sum of the scalar
multiples in (9) are positive for particular 9, M;
and M,, then (7) will hold and the algorithm will
be locally exponentially stable about that
averaged equilibrium value. For the equilibrium
at §=0 (which corresponds to W:O), the second,
third and fourth scalars of (9) are zero, while the
first is -M;{M2(M1+M3). Thus this equilibrium
point is unstable, since M; and M are positive.
The equilibria at 92=M1 corresponds to the
"correct” answer at W=W* and to its negative at
W=-W*. The scalar is 2M;(M;-M3)(2M-
(M +M3)), which equals the positive constant
2M (M -M),)2, indicating stability for both of
these answers. A symmetric argument shows
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that the equilibria at §2=M, are also stable. The
last pair of equilibria, at 2=(M,+M3)/2 has the
scalar

M;+My)
2

- M) (

M;+M M;+M
4$ 1; 2)(( 1*2-Q - M), (10)

Since exactly one of the last two factors must be
negative, these are unstable equilibria.

Using the simple test case outlined above
and the MMA algorithm (8), we simulated the
adaptation of the coefficients from a variety of
different initial locations. In the simulations, the
stepsize was u=.0002, and the four possible
values of y were chosen independently from a
uniform distribution. This is adequate to ensure
that the persistence of excitation condition is

fulfilled, and the simulations verify that if the W
parameters are initialized near the stable
equilibrium values, then they tend to converge
to the equilibrium, while if they are initialized
near one of the unstable equilibria, they tend to
move elsewhere. Not only do the parameters
converge to (1.0,-0.9) or its negative, but they
may also converge to (0.35,-0.32) or its negative.
This corresponds to when (92 - M;) is on average
zero, even though it never equals zero. All these
solutions are admissible.

The second method used to examine the
behavior of the algorithm in this example is to
plot the "arrow” diagrams as studied in [7]. These
are essentially the averaged, discrete-time
equivalent of continuous-time flow lines. The
circles of figure 3 represent the bases, or starting
points, and the lines represent the average
direction of parameter motion from the base.
Each line is averaged over 3,000 inputs. One may
think of figure 3 as approximating the “error
surface” over which the MMA algorithm moves.
It is not a quadratic surface.

Due to the intricacy of this error surface,
and the corresponding possibility of spurious
equilibria, we consider an alternative algorithm,
which is essentially a hybrid of the DD and CMA
approaches.

4. The Decision Adjusted
Modulus Algorithm

Once again, suppose that the transmitted

source is known to lie on n circles of known
radius, and let My, ... , M, designate the squares
Jik) = ( §2 - M; )2 i=1,...n, 1)

which correspond to the n known radii. The
update at each time instant is then

Wik+1)=W(k) - p § min(g2 - M2X(k) (12)



where the “"min function compares the
reconstructed signal to the nearest M; at each
time k.

In essence, DAMA acts like n CMAs, one for
“each of the known radii. While CMA is incapable
of matching more than one circle, DAMA (like
MMA) holds the promise of adapting to all n.
-Unlike MMA, DAMA does not seem to suffer
from a bizarrely shaped error surface. It makes
a decision at each timestep and adapts the
coefficients towards the nearest circle. Due to the
nondifferentiability of the minimum function, it
is not trivial to apply the averaging style results
to the study of DAMA. On the other hand, the
application of averaging requires only a Lipshitz
continuity in the algorithm update term, and one
can envision an averaging approach based on the
conical properties of the derivative of the "min"
function.

Figure 4 shows the arrow diagram for the
same equalization setup as in the previous
section, utilizing the DAMA algorithm in place of
MMA. Both algorithms converge to the same

correct answer (W:W*), the same negative

answer (W=-W*), and the same pair of "other”
admissible values at (0.35, -0.32) and (-0.35,
0.32), depending on the initialization.

5. Conclusions

This paper provides a starting point from
which a discussion of blind equalization of
multiple modulus signals can begin. We have
presented two possible approaches, one based
solely on the feature reconstruction idea as in
CMA, and the other a hybrid of CMA and DD. By
drawing “arrow” diagrams, we compared the
performance and region of attractions of the two
algorithms in one simple problem setting. After
convergence, the performance of the two
algorithms appears to be roughly comparable,
but the size of the region of attraction appears to
be somewhat larger for DAMA than for MMA.
Clearly, a lot of work remains to be done before
such adaptive schemes are ready for application.

6. References

[1] J. R. Treichler and B. G. Agee, "A new
approach to multipath correction of constant
modulus signals,” [EEE Trans. on Acoustics,,
Speech and Signal Proc., vol. ASSP-31, pp.459-
472, April 1983.

[2] J. G. Proakis, "Advances in equalization for
intersymbol interference,” in Advances in
Communications Systems, vol. 4, Academic Press,
New York, 1975.

[3] C. Richard Johnson, Jr., S. Dasgupta, and W. A,
Sethares, "Averaging analysis of local stability of
a real constant modulus algorithm adaptive
filter," IEEE Trans. On Acoustics, Speech and

Signal Proc.,” vol. ASSP-36, pp. 900-910, June
1988.

[4] Gonzalo Rey, "Local stability analysis of the
constant modulus algorithm for adaptive
equalization,” Thesis, Cornell University, January
1989,

[S} S. Haykin, Digital Communications, John Wiley
& Sons, Inc. New York, 1988.

[6] O. Macchi and E. Eweda, "Convergence
analysis of self adaptive equalizers,” /IEEE Trans.
on Information Theory, vol. IT-30, no. 2, March
1984, ’

[71 C. R. Elevitch, W, A. Sethares, and C. R.

Johnson, Jr.,, "Quiver Diagrams and Signed
Adaptive Algorithms,” [EEE Trans. on Acoustics,
Speech, and Signal Processing, Feb. 1989.
244 RS9 ] ARAGCAA] QO e Qe
qaqmrxaqqqqq;\:\’& ?
-8+ e =g aageapacns
A aq §q mc\qq-ee\o\az\‘\é‘a
124 daqaqaepoeddadbdg
qq&qqo—ppb\ex Y b e
064 g asaqgg ade e o oo q e e
qmqqdp\;,\u\)o.e\c\&bbn\:
OA—Q@oqb\\\oe\\qq%ob\a
qdq@hw\ew\\\qbb‘e‘e‘e
064 aé & v e e Ry a B v
qan\\BQ\q&p\eb\a‘e‘ew
124 &b\e\;\\’ \qv‘e‘o\obh\)b\a
Q e apbedbbebeh
1.8 4 \:\\ez}&wa»bb\e‘ov»b
b q a9 b v ddoe
241 ™% g oo DT vOee o b b
! i l ! l 1 1
L] L 1 1 I t 1 ) 1
-24-18-12-06 0 06 12 18 24
Figure 3: Arrow diagrams for MMA
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Figure 4: Arrow diagram for DAMA
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