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Abstract

Adaptive hybrids are one way of cancelling the
echo path in telephone systems. This paper illustrates
a simplified model of an adaptive hybrid using two
bifurcation parameters, the adaptive stepsize and the
ratio of the two inputs. As these parameters vary, the
system exhibits a wide variety of behaviors, including
stable and unstable equilibrium points, stable and
unstable periodic orbits, and aperiodic orbits. The
underlying bifurcations include Hopf, flip, period
doubling sequences, and a degenerate global
bifurcation which gives rise to some very complex
dynamics.

Introduction
A device called a "4:2 hybrid” is used in
tclephone systems to transform the 4 wire long

distance receive and transmit lines to and from a 2
wire local line. An ideal hybrid would move all the
incoming signal from the 4 wire receive line to the 2
wire local line, and simultaneously move the outgoing
signals from the 2 wire local line to the 4 wire
transmit line. In a real device, however, some of the
energy on the incoming line will inevitably leak into
the outgoing line. One solution, called adaptive echo
cancellation [1], [2], uses an adaptive filter to maich
the dynamics of the leakage path. See figure 1. When
the near end speaker is silent, and when the adaptive
filter has matched the transfer function of the hybrid,
then § will equal y, their difference is zero... and the
echo of the far end speech is cancelled.

In certain situations, however, an intermittent
"bursting” or “chirping” or "burping" misbehavior
arises. This bursting cycle is characterized by a long
drift phase, followed by large oscillations that quickly
restabilize, returning again to the drift phase. To
investigate the origin of this bursting, a simple model

was introduced in [3] in which a single parameter (ﬁ)
adaptive hybrid at the near end attempts to cancel
the echo of the far end speech. At the far end, a
(nonadaptive) hybrid is modeled as an attenuation B

and a delay. Refer to figure 2, where vk/wy represent
the near/far end speech, h represents the echo path
at the near end, and rp/xy represent the
received/transmitted signals at the near end. Figure 3
shows a simulation of this model in which the
transmit signal xx is small, well behaved, and almost
sinusoidal for over 4000 iterations. Suddenly, and
without apparent warning, xx oscillates rapidly and
then settles down again. A second burst occurs at
around 5800 iterations. Other bursts follow, on the
average about 2000 iterations apart. Bursting was
attributed to a lack of “persistent excitation”
combined with the inherent feedback structure of the
adaptive hybrid telephone system. It was conjectured
that certain combinations of excitation might lead to
chaotic behavior. This conjecture is examined in the
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present paper, and numerous nonlinear behaviors are
revealed, some of which may occur in physically
reasonable situations. The bursting is revealed to be
either a region of stable aperiodic orbits, a marginally
stable two periodic orbit or (perhaps) a strange
attractor, depending on the relative magnitudes of the
two inputs to the system, and depending on the
adaptive stepsize parameter.
The system model, from [3], is

Fier = Bic- p' xi? B - 0 xg Vil (1.1)
fix=h- ﬁk and the transmit signal xg is
Xk+1 = Wkl + B k41
= B Bkxk +B Vk+1 + Wiel. (1.2)

The equation pair (1.1) and (1.2) is a two state (Fy

where

,Xk) nonlinear equation with two inputs, vk and wg.
With vg=Bvk and hg= B Fg, this is equivalent to the
mapping F:R2->R2,
hy + +
Yo v } (1.3)

y =
F( h )_ ( h—uyzh—p.vy

The simplest case of (1.3) is a "D.C." or steady
state analysis in which the inputs are held constant.
Reparametrize (1.1) - (1.2) with vg=v and wy=w for

hx= B Hx, and
y hy + a + 1
F( A ]: ( hn oy honay } (1.4)
In (1.4), h and y represent the states of the
system (h is the loop gain, y is the received signal),
while p and a are the bifurcation parameters.
Physically, u represents a scaled version of the
stepsize of the adaptive algorithm, while o is
proportional to the ratio of the power of the two
constant inputs v and w. Since W' of (1.1) is a
parameter chosen by the system designer, and since

every k. Let u=p'/w2, a = Bv/w,
yk=xk/w. The system is then
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Figure 1: Basic adaptive hybrid

an upper bound on v and w are dictated by the
physical properties of the telephone system (size of
wires, maximum voltage swings, etc.), the case of
most physical interest is when p is "small." The large
p case exhibits regions of period doubling leading to
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chaos much as the large stepsize adaptive regulator of
[4] leads to such behavior.
The parameter o, however, has no such natural

limitations on magnitude, since the ratio Bv/w can
far end speech
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Figure 2: A simple model Mal’v::peech

reasonably assume any real value, with small w
corresponding to large o. Speaking imprecisely (but
nonetheless reasonably), small o correspond to a high
degree of persistence of excitation of the adaptive
algorithm, while large o correspond to a low degree of
excitation. It is, of course, the latter which exhibit the
more exotic (mis)behaviors. Since the excitation levels
cannot generally be manipulated by the system
designer, such exotic behaviors cannot be ruled out in
applications.

The body of the paper presents numerous
simulations which examine the behavior of the hybrid
system (1.4) for various values of stepsize p and
excitation a. The pictures show equilibrium points,
two periodic ' orbits, and aperiodic orbits. Sometimes
several orbits coexist on the same phase plane. As the
parameter o unfolds, several types of bifurcations are
apparent, including Hopf, flip, and a family of
degenerate global bifurcations. For large values of the
bifurcation parameter, unwanted instabilities due to a
"large stepsize" are encountered.

While many of these behaviors (and our
observations about those behaviors) can be proven
[5], the last few pictures go beyond tractability. When
the inputs are sinusoidal, all the bizarre behaviors are
found, and some new phenomena are revealed. The
final section presents our conclusions: the bursting
phenomena is one of three behaviors depending on
the conditions under which the system operates,
bursting is inherent in underexcited adaptive systems
which are encased in a feedback loop, and persistence
of excitation is virtually necessary for the good
performance of such adaptive systems.

Picture Gallery

The simplest version of (1.4) is when the
adaptation is frozen with a zero stepsize. Though
physically uninteresting, this case already exhibits
some nontrivial behaviors. With u=0, (1.4) becomes

hy + o +1
F( Y )= ( v } an
. qir o+l
which has equilibria at y*:‘m and h* arbitrary
(h*A). This equilibrium is stable when Ih*I<l (though
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Figure 3: Bursting in hybrid model.

not asymptotically stable in the h direction) while it is
unstable for 'h*I>1. When h*=1, the map is a pure
integrator and hence is unstable (except for the
singular point a=-1). At h*=-1, (2.1) is again stable
(though not asymptotically in either h or y).

For h*=-1 there is also a family of stable 2
periodic orbits, since ygi+2=yk. This information on the
behavior of (2.1) is presented graphically in figure 4.
Clearly, when h is allowed to vary by considering
nonzero W, the behavior of the system will be at least
this complicated, involving both equilibria and
periodic orbits.

When u#0, F has a unique fixed point at y*=1,
h*=-a. For a=-1, there is an isolated fixed point at
y*=1, h*=1, and a subspace of fixed points at y*=0, h*
arbitrary. The stability of the isolated fixed points can
be addressed by examining the eigenvalues of the
Jacobian of F evaluated at y* h*. Writing out
DF(y*h*) and applying the Jury test for stability
shows that the eigenvalues of DF are less than unity if
and only if a>-1, u>0, and a<1-p/2 are satisfied
simultaneously. This region is shaded in figure 5. All
points on the boundary of this region are bifurcation
points, since they represent values of a and/or p for
which the magnitude of the eigenvalues of DF are
exactly unity,
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Figure 4: Phase portrait for p=0



For u<0 and p>4 there are no critical points and
the system (1.4) is always unstable. These have
simple physical explanations. Negative p corresponds

-4

Flip Bifurcation C2

@@ «cpo
~

&
\\cpq CP3

Global Bifurcation (p=0) Hopf Bifurcations (a=-1)

Figure 5: Bifurcation diagram o vs. p

to a reversal of the sign of the adaptation gain, while
u>4 corresponds to instability induced by violation of
the 'small stepsize' requirement. The parameter error
in these cases diverges at an exponential rate, and
simulations are typically arrested by numerical
overflow within several dozen iterations.

When O<p<4, there are two critical points. For
a=1-p/2, one eigenvalue is at -1, indicating that these
are flip bifurcations which shed a two periodic orbit
as C2 is crossed. Inside the triangle, simulations are
very boring - both states rapidly converge to the
equilibrium. As the C2 line is crossed, the equilibrium
bifurcates into a two period orbit.

The dynamics near the a=-1 line are more
involved. These are Hopf bifurcations with both
eigenvalues on the unit circle for O<u<4. Figure 6
shows an aperiodic orbit for a=-1.05. Inside the two
circles is an unstable 2 periodic orbit. The trajectory
bounces from circle to circle at each iteration, and
'fills in' the perimeter of the circles without ever
returning to exactly the same values. As p varies from
0 to 4, the roots move around the unit circle through
the whole spectrum of possible Hopf bifurcations.
Degeneracies occur at p=0 (CP2 of figure S5 with
double 1 eigenvalue), at p=2 (CP4 with eigenvalues
+/-i), at p=3 (CP3 with eigenvalues at -0.5+/-iV3/2),
and at u=4 (CPO with a double eigenvalue at -1).

For the global bifurcation point o=-1, the
eigenvalues of DF are at 1 and h* for any h*, and the
subspace y*=0 is attractive for |h*I<1, and repellant
for Ih*I>1. Figure 7 gives a graphic interpretation of
the behavior of the phase trajectories of the system.
In the left half plane, the trajectories bounce from top
to bottom at alternate iterations, eventually flowing
into one of the attractive points at y*=0 and |h*I<1. In
the right half plane, trajectories move straight to the
y*=0 line or they become trapped about the
equilibrium at (1,1). The h=-1 point is the germ that
starts the two periodic orbit that later undergoes a
Hopf bifurcation. The h=1, y=1 point is the fixed point
analyzed above which undergoes a Hopf bifurcation
and is the origin of the stable aperiodic orbits of
figure 6 seen for o near -1.

As o crosses the -1 bifurcation point, several
things happen. Compare figure 7 with figure 8, which
shows a phase portrait of several trajectories for a=-
1.02. First, the equilibrium and the surrounding orbits
become unstable. This is pictured in the outward
spiral in the upper right hand corner of figure 8. (The
arrows have been added to the simulation to indicate
the general direction of motion.) Second, the y=0, h=-1
point splits into an unstable two periodic orbit. These
are the small x's inside the small circles near the h=-1
point. Most likely, the circles themselves are stable
aperiodic orbits. Third, the subspace of equilibria
disappears, and is replaced by a long, slowly moving
trajectory that channels the right half plane
trajectories to the aperiodic orbit near h=-1. This is
the “linear” drift phase in which the parameter error
slowly accumulates.

There is a stable equilibrium only for values of
a within the triangular region of figure 5. When there
is a no stable fixed point, the next simplest possible
behavior is that there might be low period orbits. The
flip bifurcation indicates the existence of two-periodic
orbits for systems whose parameters are above (but
close to) the C2 line. Two-periodic orbits can be
investigated by finding the equilibria of F2:R2->R2
which can be calculated directly from (1.3). Details
are in [5].

Since p=0, h=-1 gives rise to a two-periodic
orbit, it is not surprising that some of these orbits
persist for nonzero u. In fact, there are equilibria of
F2 at h=-1+O(g). For example, setting a=1.2 and
p=0.01, and calculating 50,000 iterations of (1.3) leads
to the two periodic solution (-0.9962, 1.4395) and (-
0.9928, 0.7660). This is clearly a stable 2 periodic
orbit. In contrast, set a=-1.05 without changing p. The
simulation does not settle into a two periodic orbit
even after 25 million iterations! See figure 6.

The stability of a two period map can be
determined by the eigenvalues of the Jacobian of the
two iteration map, that is, the eigenvalues of
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Figure 6: Aperiodic orbits at =-1.05

DF2(y*,h*). The first example is within the stability
region for the two periodic orbit, and hence it
converges to this orbit. This illustrates the effect of
the flip bifurcation at a=1-u/2 in which the stable
equilibrium for O< a <1-u/2 is transformed into a
stable two periodic orbit when a>1. The second
example is in the region where 2 periodic orbits are
unstable and the system does not converge to a 2
period solution. The two points of the unstable 2
periodic orbit are the x's inside the circles of figure 6.
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Figure 7: Global bifurcation point a=-1

As a decreases further (a small amount that appears
to go to zero as the stepsize p vanishes), the aperiodic
orbits grow larger, until at a~1.04 (for p=.01) they
touch. At this point, another qualitative change occurs
- the aperiodic orbits become unstable, and the
behavior of figure 9 appears. Again, the unstable 2
period orbit is marked by the small x's in the center,
and the trajectories jump from oval to oval at
alternate iterations. They never seem to settle down
to nice smooth curves... this simulation was begun
after 25 million iterations... one can only suppose that
the tattered edges of this figure are not transients
that will die away, but rather are an intrinsic feature
of its behavior.

How large can a get and still retain stability of
this two periodic orbit? An approximate analysis
gives o~7 as an upper bound for stability and
simulations show a bifurcation point at a=6.4, when a
four periodic orbit comes into existence. This is the
beginning of a period doubling sequence leading into
chaos, as suggested by the simulations in figure 10.
Physically, this can be interpreted as a violation of
the “small stepsize” assumption. Note that as p is
decreased, the two periodic sequence remains stable
for larger and larger a. These instabilities eventually
overwhelm the system, and we lose the ability to
track the behavior for larger «.

y

Figure 8: Phase portrait for a=-1.2

Conclusions

We have three possible explanations of the
observed bursting behavior of the adaptive hybrid.
For a>1, the bursting may be a transient
phenomena that will eventually decay into a two
periodic orbit. For o near -1, the bursting may be an
aperiodic orbit. For a<<-1, the bursting may be due
to some yet unclassified dynamics (as in figure 9)
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Figure 9: Phase portrait a=-1.2
(begun after 25,000,000 iterations)

due to the degenerate Hopf bifurcation. In the latter
two cases, the behavior is not transient and will not
die away with time.

In surveying the adaptive literature, there
have been numerous attempts to both describe and
explain the misbehaviors of adaptive systems. It
appears that virtually all adaptive systems which
incorporate the adaptive element inside a feedback
loop (the hybrid, IIR identification, adaptive
control, etc.) are susceptible to the same range of
possible misbehaviors due to underexcitation as the
present system. In essence, this suggests that the
persistence of excitation conditions are virtually
necessary to assure that one remains in the "good"
operating region.
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Figure 10: Period doubling
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