
Tuning and Timbre: A Perceptual Synthesis
Bill Sethares

IDEA: Exploit psychoacoustic studies on the
perception of consonance and dissonance. The
talk begins by showing how to build a device that
can measure the “sensory” consonance and/or
dissonance of a sound in its musical context.
Such a “dissonance meter” has implications in
music theory, in synthesizer design, in the con-
struction of musical scales and tunings, and in
the design of musical instruments.

...the legacy of Helmholtz continues...
1



Some Observations. . .

Why do we tune our instruments the way we do?

Some tunings are easier to play in than others.

Some timbres work well in certain scales, but not in others.

What makes a sound easy in 19-tet but hard in 10-tet?

“The timbre of an instrument strongly affects what tuning and scale sound
best on that instrument.” – W. Carlos
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What are Tuning and Timbre?
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Tuning = pitch of the fundamental (in this case 196 Hz)

Timbre involves (a) pattern of overtones (Helmholtz )

(b) temporal features
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Some intervals “harmonious” and others “discordant.” Why?

X

X

X X

X X X X

X

X

X X

1.06:1 2:1

1.89:1 3:2

1.414:1 4:3

4



Theory #1: (Pythagoras ) Humans naturally like the sound of intervals de-
fined by small integer ratios.

small ratios imply short period of repetition

short = simple = sweet

Theory #2: (Helmholtz ) Partials of a sound that are close in frequency
cause beats that are perceived as “roughness” or dissonance.

absence of beats is called “consonance.”
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A Short History of “Consonance” and “Dissonance” (after James Tenney )

• CDC#1: melodic consonance (e.g., of successive tones)

• CDC#2: polyphonic consonance (e.g., intervals between notes, “sounds
good”)

• CDC#3: contrapuntal consonance (defined by role in counterpoint)

• CDC#4: functional consonance (relationship with “tonic” or “root”)

• CDC#5: psychoacoustic consonance (intrinsic to a sound)
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What are Beats? (beats1-2-3.avi)
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What should we expect to hear?

What happens when frequency of
beats enters audio range?

100 Hz + 105 Hz = 5 Hz beats
100 Hz + 150 Hz = 50 Hz beats
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Experiment: (Plomp & Levelt ) Fix
w1 and let w2 scan through all fre-
quencies. Ask listeners what they
perceive.
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Two Sine Waves: One Fixed, One Sweeping (sinediss.avi)
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Parameterizing the Sensory Dissonance Curve

as the difference between a sum of exponentials

d(x) = e−ax − e−bx
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Some Implications. . .

Spectrum of a sound determines which intervals are most consonant

By using different kinds of spectra, can make almost any set of intervals
sound consonant.

How to make a large variety of (organic, natural sounding) inharmonic tim-
bres that work together? Using spectral mappings, can often maintain
much of the original integrity of the sound. Examples:

consonant tritone — consonant pseudo-octaves

n-tone equal-tempered sounds
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A Tritone Sound

Can use this parameterization to
make predictions. Consider a
sound composed of two partials:
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Tritone Sound II

Using the tritone sound, the dissonance curve predicts that the tritone
interval

√
2 will be more consonant than the musical fifth or fourth.

fifths

fourths

tritones

& # ˙̇̇ ˙̇̇ ˙̇̇

(trichime.avi)
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Harmonic Dissonance Curve

Many musical sounds have har-
monic partials, i.e., are (approxi-
mately) periodic with partials at

f,2f,3f,4f,5f,6f,7f, . . .

Dissonance curves for harmonic
tones have many minima that oc-
cur at simple integer ratios, which
are close to the tuning of the key-
board. 1:1 2:13:24:3
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Helmholtz’s Dissonance Curve
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Two pitches are sounded simultaneously. The regions of roughness due
to pairs of interacting partials are plotted over one another, leaving only a
few narrow valleys of relative consonance. The figure is redrawn from On

the Sensation of Tone.
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Just Intonation

is a family of musical scales that
contain many of the simple in-
teger ratios (such as 3:2, 4:3,
5:3, etc.). A body of music ex-
ists in JI by composers such as
Harry Partch (using his 43-tone
per octave scale), Lou Harrison,
D. Doty, Larry Polansky, and oth-
ers. (* ⇒ just thirds, and <> ⇒
just fifths.) (Paradigms Lost)
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Relating Spectra and Scales

• Dissonance curves are drawn using the spectrum of a sound by sum-
ming the dissonances between all pairs of partials over a range of
frequencies.

• Given a sound, the related scale is defined by the minima of the dis-
sonance curve

• “Just Intonation” is the scale related to harmonic partials.

• What about other, inharmonic tones? Can dissonance curves be used
to make predictions about what will sound “good”?
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Stretched and Compressed Tones

have partials at fj = fA log2(j)

1    2    3    4    5    6   7    8    9   10  11  12  13  14  15  16  17  18 

harmonic
spectrum at f

harmonic
spectrum at 2f

stretched
spectrum at f

stretched
spectrum 
at 2.1f

1   2.1  3.2  4.4  5.6  6.8   8.0  9.3 10.5 11.8 13. 14.3 15.6 16.9 18.1

A = 2 gives harmonic tones, A > 2 are called “stretched,” A < 2 are
called “compressed”
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Stretched and Compressed Tones II
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12-tet scale steps
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Predictions:
(simpletun1-2-3-4)

• harmonic tones in 12 tone = OK
• harmonic sounds in stretched scale = not OK
• stretched sounds in stretched scale = OK
• stretched sounds in 12 tone = not OK
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Musical Implications

Olson: It is an established fact that the most pleasing combination of two
tones is one in which the frequency ratio is expressible by two integers,
neither of which is large.

Piston: Two sounds are said to be an octave apart when their frequency
ratio is 2:1... The octave is the most consonant of intervals.

Such statements are found throughout the literature. Examples such as
the stretched octaves show that either

(A) octave means a frequency ratio of 2:1, or

(B) octave means the most consonant interval (other than the unison).

(A) and (B) are the same only for sounds with harmonic spectra
20



Spectrum of the Tingshaw Bell
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Dissonance curve for the ting-
shaw bell has minima shown by
tick marks. The mimimum at
2.02 serves as a pseudo-octave,
because minima in the second
pseudo-octave align with those in
the first. (tingshaw)

ratio            cents
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Tingshaw Scale
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Spectral Mappings

can be used to create new “instruments” that are consonant with a
desired timbre yet retain much of the character of familiar instruments
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Spectral Mappings change
frequencies, preserving
magnitude and phase re-
lationships, which helps to
preserve the “character” of
the original.

f      2.1f  2.9f  3.8f      5.4f 5.8f     7f      8.4f 8.9f   ...
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destination
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Sounds for 10-tone equal temperament

A timbre designed to be played in 10-tet has partials at
f, fα10, fα16, fα20, fα26, fα29, fα30, fα33, fα36, fα39, fα40 where

α = 10√2. The dissonance curve for this timbre is:
 12-tet scale steps:                                 octave 

 10-tet scale steps:                                 octave 
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Minima of the curve coincide with steps of the 10-tet scale and not with
steps of 12-tet. (Ten Fingers, MysteryX)
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10-tet Circle of Thirds

D   E      G       I     J       B     D       F

F     H              A     C     E

D   E      G       I     J       B     D       F

F     H              A     C     E

D   E      G       I     J       B     D       F

F     H              A     C     E

D   E      G       I     J       B     D       F

F     H              A     C     E

D   E      G       I     J       B     D       F

F     H              A     C     E

E->B->I->F->C->J->G

 ->D->A->H->E

There are many such music theories. You can invent new chords, new
scales, new progressions – Bach didn’t use them all up. (Circle of Thirds)
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10-tet Chords
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Sounds for 11-tet

• trumpet→ 11-tet trumpet

• bass→ 11-tet bass

• guitar→ 11-tet guitar

• pan flute→ 11-tet pan flute

• moog synth→ 11-tet moog synth

• phase synth→ 11-tet phase synth

Musical interludes played:

• In 11-tet scale with 11-tet timbres

• In 11-tet scale with regular (unmapped, harmonic) timbres

(tim11tet.avi, tim11vs12.avi, Turquoise Dabo Girl)
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Create sounds consonant
with the spectrum of a tom-
tom: Harmonic spectra at
g, 2g, 3g, 4g, 5g, . . . are
mapped into the tom-tom
spectrum and played using
the related scale.
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Sounds consonant with the spectrum of a tom-tom

Several instruments and their transformation into the spectrum of a tom
tom. (tomspec.avi)
• guitar→ tom tom guitar
• bass→ tom tom bass
• trumpet→ tom tom trumpet
• flute→ tom tom flute

A musical passage illustrates the transformed instruments played in the
related scale. (Glass Lake)

Mild transformations (like the 2.1 stretched and 10-tet) retain much of the
character of the instrument from which they were derived.

Severe transformations (like the tom tom example) lose their tonal integrity.
This does not mean that such sounds are musically useless!
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The two sides. . .

Given a timbre, what is the related scale?

Just draw dissonance curve and find minima.

Given a desired scale, what are related timbres?

Solvable via iterative optimization methods

31



More Formally

Suppose the timbre T has n partials at f1, f2, . . . , fn. Let αT be the timbre
with partials at αf1, αf2, . . . , αfn. The dissonance curve generated by T
is defined to be a plot of the sensory dissonance between T and αT over
all intervals α of interest.

(1) Number of minima: dissonance curves have up to 2n(n− 1) minima.

(2) Global minimum: the unison (α = 1) is the global minimum.

(3) Asymptotic value: as the intervals grow large (as α → ∞), the disso-
nance approaches a value that is no more than the intrinsic dissonance of
the timbre itself.

(4) Principle of coinciding partials: up to half of the local minima occur at
intervals α for which α = fi

fj
where fi and fj are arbitrary partials of T .
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Timbre Selection as an Optimization Problem

Often one wishes to specify a desired scale. How can related timbres be
found? Suppose there are m scale tones.

Try # 1: Choose a set of n partials and n amplitudes to minimize sum of
dissonances over all m intervals.

Problems: (a) vanishing amplitudes (b) runaway frequencies

Fix by adding constraints: (a) chose set of amplitudes a priori (b) insure all
partials lie in some predetermined range.

Revised problem: With the amplitudes fixed, select a set of n frequencies
lying in range to minimize:

w1 (sum of dissonances over all intervals) + w1 (number of local minima)
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Audio Signal Processing

These examples demonstrate that dissonance curves really do capture
something crucial about our perceptions of desirable and undesirable sounds.

• predictions of good/bad sounding pieces are consistent with calcula-
tions

• minima of dissonance curve are good scale/chord indicators

Thus:

We can use the notion of consonance as a basis for audio signal process-
ing devices.

Build into our machines knowledge of how our perceptions work.

What would such machines look like?
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Idea: A keyboard “knows” what sounds you have played. Suppose you
choose

The keyboard could automatically adjust the tuning so as to minimize the
dissonance by “sliding down” the dissonance curve.
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Adaptive Tuning

A “Dynamic” or “Adaptive” tuning strategy can be implemented in a gradient
style algorithm

new
frequency
values

 =


old

frequency
values

− {stepsize}{gradient}
that finds the nearest local minimum of dissonance curve to each com-
manded note.

Musical implications:

• a way to automatically play in JI when using harmonic timbres
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• automatically play in related scale using nonharmonic timbres

• no knowledge of key or tonal center required (method operates on
sound rather than on musical theory)

• many musicians (singers, violinists, horns) adjust their intonation in re-
sponse to musical situation - provides a way for keyboardists to imitate
this

• can act as a kind of intelligent portamento or “elastic tuning”



Listening to Adaptation

Three notes are played, each with timbre f,1.414f,1.7f,2f

Initial ratios of fundamentals are: 1.0, 1.335, 1.587 (i.e., 12-tet notes C, F,
G#). Final adapted ratios are 1.0, 1.414, 1.703

Example is played three times, with (a) extremely slow adaptation (b) slow
adaptation, and (c) medium adaptation. (listenadapt)

• adaptation removes most prominant beats

• adaptation retunes all three notes

• remaining quicker beats are inherent to sound

• remaining slow beats (≈ 1 per second) due to resolution of the equip-
ment
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(local anomaly,
aerophonius intent)
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JI vs. 12-tet vs. Adaptive Tuning

An example of drift in Just In-
tonation: the fragment ends
about 21 cents lower than it be-
gins. 12-tet maintains the pitch
by distorting the simple integer
ratios. The adaptive tuning mi-
crotonally adjusts the pitches of
the notes to maintain simple ra-
tios and to avoid the wander-
ing pitch. Frequency values are
rounded to the nearest 0.5 Hz.
(sytonJIdrift, synton12tet, syn-
tonadapt)

Frequencies when 
played in 12-tet:

  392   440   440   392    392

  329.5 329.5 293.5 293.5  329.5

  261.5 261.5 293.5 247    261.5

  131   110    87.5  98    131

Frequencies when 
played in adaptive 
tuning:

  392.5 440   438.5 391    392.5

  327   330   292   294    327

  261.5 264   292   245    261.5

  131   110    87.5  98    131

Frequencies when
played in JI with held 
notes:

  392.5 436---436   387.5--387.5

  327   327   290.5-290.5  323

  261.5-261.5 290.5 242    258.5

  131   109    87    96.5  129

Ratios when played in 
adaptive tuning and 
in JI:

  6/5   4/3   3/2   4/3    6/5

  5/4   5/4   1/1   6/5    5/4

  2/1   6/5   5/3   5/4    2/1
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Pitch/Intonation Correction

By making sounds more consonant, they become more “in-tune”

Transform
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Based
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Transform
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Consonance Based Sound Synthesis

Combines character of two (or more) waveforms in a musically intelligent

(consonant) manner

output

input

reference

Consonance
Based
Adaptation

....

Frequency
Domain 
Filter

....

Inverse
Transform

osc
2

source 2

Transform

osc
1

source 1

Transform

.... ....

Envelopes
Filters,
LFO's, etc.

A method of sound synthesis that incorporates a model of the listener.
41



Special Effects Device

Algorithm adjusts partials of a sound to maximize consonance with refer-
ence.

• use of inharmonic reference

• voice with spectrum of xylophone

• snare drum made consonant with a flute

• use “backwards” to increase dissonance or to precisely control amount
of consonance

(maxdiss)
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Traditional Thai Music

is played on a collection of in-
struments (the gong circle) fea-
turing the (xylophone-like) renat.
(Sudsaboun)

Sorrell: Theoretically, the Thai scale has seven equidistant notes, which
means that the intervals are “in the cracks” between our semitone and
whole tone, and are equal. . .
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Traditional Thai Music II

The spectrum of a typical key of the renat
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frequency

m
a
g
n
it
u
d
e

is very close to the spectrum of an ideal bar.

frequency Hz: 436 642 1246 2393 3873
ratio: f 1.47f 2.85f 5.48f 8.88f
ideal bar: f − 2.76f 5.4f 8.9f
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Traditional Thai Music III

But the dissonance curve for the ideal bar looks nothing like 7-tet. What’s
wrong? Observe that Thai music uses both inharmonic instruments (like

the renat) and harmonic instruments (reeds, voice). Drawing the
dissonance curve for both sounds simultaneously yields:

7-tet scale steps
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Traditional Indonesian Music

is played on a collection of met-
allophones including the bonang.
(Kebyar Duduk)

There are two kinds of scales: slendro is very close to 5-tet and pelog is a
seven tone scale with unequal intervals (sometimes anotated S S L S S S
L).
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Traditional Indonesian Music II

Since the bonang has a unique
bell-like shape, there is no ideal
shape to which it can be com-
pared. The spectrum of three dif-
ferent bonang kettles is shown,
and a good generic bonang
spectrum is

f, 1.52f, 3.46f, 3.92f.

0 1000 2000 3000 4000
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Traditional Indonesian Music III

As with the Thai instruments, the inharmonic bonang is often played
together with harmonic instruments (flutes, voices). Drawing the

dissonance curve for both sounds simultaneously yields
5-tet scale steps

12-tet scale steps
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which has minima at or near all of the 5-tet scale steps. Similar analysis
can be done for the pelog scale.
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Current Work

• Last time we saw ways to adjust timbre/spectrum to fit a desired spec-
trum by minimizing sensory dissonance.

• Idea: take a melody (e.g., a clarinet) and dynamically re-align the tim-
bre so that it “harmonizes” with a collection of sounds (e.g., multiphon-
ics produced by the clarinet).

• a way to use arbitrary sounds in the role normally occupied by of a
“chord pattern”

Example:

• the melody line (clarimel)

• the multiphonics (allmultiphonics)
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Current Work II

How to align the multiphonics with the melody?

• one multiphonic all the way through (merge01)

• one multiphonic chosen randomly at each beat (clariphonicsrand2)

• divide into groups and choose from a small number (clariphonics-
group2.mp3) (clariphonicsgroup2b.mp3)

Comments:

• clarinet-ness lost: it’s not a clarinet or a multiphonic

• a bizzare kind of harmonization

• need to synchronize changes in “harmony” with sections of melody
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Legend of Spectral Phollow

chooses at each instant a multiphonic to accompany the performed melody.
The multiphonic is transposed, and this generates a kind of (inharmonic)
harmonization.

What are the “rules” of multiphonic harmonization?

Use other sounds to derive other kinds of harmonies: gongs, bells, drums,
anything with a rich/complex timbre will do.
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Summary

Consonance and dissonance can be described in concrete terms and the
predictions of the theory are readily verifiable.

Given a timbre, it is easy to find the related scale in which the sound can
be played most consonantly.

Given a scale, it is possible to find related timbres that can be played con-
sonantly in that scale.

Problem with unrelated scales and timbres is that there is little opportunity
for contrast between consonant and dissonant passages - related scales
and timbres allow composer/performer control.
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Familiar “music theory” breaks down for inharmonic sounds. The consonance-
based approach can help to give structure to inharmonic musical realms.

For harmonic sounds, the Western 12-tet tuning can be viewed as approx-
imating related JI scales. The same ideas can be used to describe the
7-tet scales of traditional Thai music as well as Indonesian scales. The
musical scales of these cultures can be derived from the timbre of pairs of
instruments (rather than of a single instrument, as in the West).

Ideas lead to several consonance-based audio signal processing devices:
adaptive keyboards, pitch/intonation correction, sound synthesis, timbral
manipulation

Throughout, we have seen the enduring influence of the contributions of
Helmholtz; the basic characterization of timbre in terms of spectrum, and
generalizations of physical beating as a paradigm for sensory consonance.



Areas for Further Thought

Variable bandwidth transformations? wavelets or short FFTs?

Are there simple time domain operators that do interesting spectral maps?

How to (re)design acoustic instruments for play in other tunings by adjust-
ing: mass and density of string — contour and geometry of tubes — shape
and topology of resonator

Exploit other psychoacoustic phenomena in audio devices

• masking effects

• fusion/fissioning of sounds

• auditory illusions
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IDEA: Exploit psychoacoustic studies on the
perception of consonance and dissonance. The
talk begins by showing how to build a device that
can measure the “sensory” consonance and/or
dissonance of a sound in its musical context.
Such a “dissonance meter” has implications in
music theory, in synthesizer design, in the con-
struction of musical scales and tunings, and in
the design of musical instruments.

...the legacy of Helmholtz continues...
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