Basic formulas of Einstein's theory of relativity

$\Delta t = \gamma \Delta t_{\rm O}$	time dilation
$L = L_0 / \gamma$	length contraction
$m = \gamma m_0$	mass change
K. E. = $m_0 c^2 (\gamma - 1)$	relativistic kinetic energy
$V_{net} = (v + U) / (1 + vU/c^2)$	velocity addition law
$E = mc^2$	mass-energy equivalence

where:

 $\Delta t_{0,} L_{0,} m_{0}$ are time, length, and mass in the rest frame

 Δt , L, m are time, length, and mass as viewed by an outside observer

 $\gamma = (1 - v^2 / c^2)^{-1/2}$

v = the velocity of the rest frame

U = the velocity of something within the rest frame

c = the speed of light, 3 X 10⁸ meters/second

Extremely Useful Approximation: $(1 + x)^n \approx 1 + nx$ if x is very small.